Loading…
Rapidly Selecting Good Compiler Optimizations using Performance Counters
Applying the right compiler optimizations to a particular program can have a significant impact on program performance. Due to the non-linear interaction of compiler optimizations, however, determining the best setting is nontrivial. There have been several proposed techniques that search the space...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Applying the right compiler optimizations to a particular program can have a significant impact on program performance. Due to the non-linear interaction of compiler optimizations, however, determining the best setting is nontrivial. There have been several proposed techniques that search the space of compiler options to find good solutions; however such approaches can be expensive. This paper proposes a different approach using performance counters as a means of determining good compiler optimization settings. This is achieved by learning a model off-line which can then be used to determine good settings for any new program. We show that such an approach outperforms the state-ofthe- art and is two orders of magnitude faster on average. Furthermore, we show that our performance counter-based approach outperforms techniques based on static code features. Using our technique we achieve a 17% improvement over the highest optimization setting of the commercial PathScale EKOPath 2.3.1 optimizing compiler on the SPEC benchmark suite on a recent AMD Athlon 64 3700+ platform. |
---|---|
DOI: | 10.1109/CGO.2007.32 |