Loading…
Analysis of Multi-Actor Policy Contexts Using Perception Graphs
Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to a...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943 |
---|---|
cites | |
container_end_page | 167 |
container_issue | |
container_start_page | 160 |
container_title | |
container_volume | |
creator | Bots, Pieter W. G. |
description | Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain. |
doi_str_mv | 10.1109/IAT.2007.31 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_acm_books_10_1109_IAT_2007_31</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4407277</ieee_id><sourcerecordid>acm_books_10_1109_IAT_2007_31</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943</originalsourceid><addsrcrecordid>eNqNkDFPwzAUhC0hJKB0YmTxwISU8l7sxMmEogpKpSI6tLPluM9gSOMqDhL596QqP4BbbrjT6fQxdoMwQ4TyYVltZimAmgk8Y1eg8jITkCpxwaYxfsIoUWYS8JI9Vq1phugjD46_fje9Tyrbh46vQ-PtwOeh7emnj3wbffvO19RZOvQ-tHzRmcNHvGbnzjSRpn8-Ydvnp838JVm9LZbzapUYgUWfEAiXSszIIu12aAjzoq7Hh5SaFIwABxmgLZWDQhmVK5JCkJOlzYvClVJM2O1p1xORPnR-b7pBSwkqVWpM70-psXtdh_AVNYI-otAjCn1EoQXquvPkxvLdP8riF8KUXUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bots, Pieter W. G.</creator><creatorcontrib>Bots, Pieter W. G.</creatorcontrib><description>Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain.</description><identifier>ISBN: 0769530273</identifier><identifier>ISBN: 9780769530277</identifier><identifier>DOI: 10.1109/IAT.2007.31</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Algebra ; Applied computing -- Operations research -- Decision analysis ; Bayesian methods ; Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents ; Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning ; Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning ; Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies ; Context modeling ; Employment ; Heuristic algorithms ; Inference mechanisms ; Information systems -- Information systems applications -- Decision support systems ; Intelligent agent ; Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms ; Matrices ; Public healthcare ; Uncertainty</subject><ispartof>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07), 2007, p.160-167</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4407277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4407277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bots, Pieter W. G.</creatorcontrib><title>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</title><title>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07)</title><addtitle>IAT</addtitle><description>Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain.</description><subject>Algebra</subject><subject>Applied computing -- Operations research -- Decision analysis</subject><subject>Bayesian methods</subject><subject>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</subject><subject>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning</subject><subject>Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning</subject><subject>Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies</subject><subject>Context modeling</subject><subject>Employment</subject><subject>Heuristic algorithms</subject><subject>Inference mechanisms</subject><subject>Information systems -- Information systems applications -- Decision support systems</subject><subject>Intelligent agent</subject><subject>Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms</subject><subject>Matrices</subject><subject>Public healthcare</subject><subject>Uncertainty</subject><isbn>0769530273</isbn><isbn>9780769530277</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNkDFPwzAUhC0hJKB0YmTxwISU8l7sxMmEogpKpSI6tLPluM9gSOMqDhL596QqP4BbbrjT6fQxdoMwQ4TyYVltZimAmgk8Y1eg8jITkCpxwaYxfsIoUWYS8JI9Vq1phugjD46_fje9Tyrbh46vQ-PtwOeh7emnj3wbffvO19RZOvQ-tHzRmcNHvGbnzjSRpn8-Ydvnp838JVm9LZbzapUYgUWfEAiXSszIIu12aAjzoq7Hh5SaFIwABxmgLZWDQhmVK5JCkJOlzYvClVJM2O1p1xORPnR-b7pBSwkqVWpM70-psXtdh_AVNYI-otAjCn1EoQXquvPkxvLdP8riF8KUXUA</recordid><startdate>20071102</startdate><enddate>20071102</enddate><creator>Bots, Pieter W. G.</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20071102</creationdate><title>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</title><author>Bots, Pieter W. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Applied computing -- Operations research -- Decision analysis</topic><topic>Bayesian methods</topic><topic>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</topic><topic>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning</topic><topic>Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning</topic><topic>Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies</topic><topic>Context modeling</topic><topic>Employment</topic><topic>Heuristic algorithms</topic><topic>Inference mechanisms</topic><topic>Information systems -- Information systems applications -- Decision support systems</topic><topic>Intelligent agent</topic><topic>Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms</topic><topic>Matrices</topic><topic>Public healthcare</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Bots, Pieter W. G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bots, Pieter W. G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</atitle><btitle>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07)</btitle><stitle>IAT</stitle><date>2007-11-02</date><risdate>2007</risdate><spage>160</spage><epage>167</epage><pages>160-167</pages><isbn>0769530273</isbn><isbn>9780769530277</isbn><abstract>Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/IAT.2007.31</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769530273 |
ispartof | 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07), 2007, p.160-167 |
issn | |
language | eng |
recordid | cdi_acm_books_10_1109_IAT_2007_31 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra Applied computing -- Operations research -- Decision analysis Bayesian methods Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies Context modeling Employment Heuristic algorithms Inference mechanisms Information systems -- Information systems applications -- Decision support systems Intelligent agent Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms Matrices Public healthcare Uncertainty |
title | Analysis of Multi-Actor Policy Contexts Using Perception Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20Multi-Actor%20Policy%20Contexts%20Using%20Perception%20Graphs&rft.btitle=2007%20IEEE/WIC/ACM%20International%20Conference%20on%20Intelligent%20Agent%20Technology%20(IAT'07)&rft.au=Bots,%20Pieter%20W.%20G.&rft.date=2007-11-02&rft.spage=160&rft.epage=167&rft.pages=160-167&rft.isbn=0769530273&rft.isbn_list=9780769530277&rft_id=info:doi/10.1109/IAT.2007.31&rft_dat=%3Cacm_6IE%3Eacm_books_10_1109_IAT_2007_31%3C/acm_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4407277&rfr_iscdi=true |