Loading…

Analysis of Multi-Actor Policy Contexts Using Perception Graphs

Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to a...

Full description

Saved in:
Bibliographic Details
Main Author: Bots, Pieter W. G.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943
cites
container_end_page 167
container_issue
container_start_page 160
container_title
container_volume
creator Bots, Pieter W. G.
description Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain.
doi_str_mv 10.1109/IAT.2007.31
format conference_proceeding
fullrecord <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_acm_books_10_1109_IAT_2007_31</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4407277</ieee_id><sourcerecordid>acm_books_10_1109_IAT_2007_31</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943</originalsourceid><addsrcrecordid>eNqNkDFPwzAUhC0hJKB0YmTxwISU8l7sxMmEogpKpSI6tLPluM9gSOMqDhL596QqP4BbbrjT6fQxdoMwQ4TyYVltZimAmgk8Y1eg8jITkCpxwaYxfsIoUWYS8JI9Vq1phugjD46_fje9Tyrbh46vQ-PtwOeh7emnj3wbffvO19RZOvQ-tHzRmcNHvGbnzjSRpn8-Ydvnp838JVm9LZbzapUYgUWfEAiXSszIIu12aAjzoq7Hh5SaFIwABxmgLZWDQhmVK5JCkJOlzYvClVJM2O1p1xORPnR-b7pBSwkqVWpM70-psXtdh_AVNYI-otAjCn1EoQXquvPkxvLdP8riF8KUXUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bots, Pieter W. G.</creator><creatorcontrib>Bots, Pieter W. G.</creatorcontrib><description>Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain.</description><identifier>ISBN: 0769530273</identifier><identifier>ISBN: 9780769530277</identifier><identifier>DOI: 10.1109/IAT.2007.31</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Algebra ; Applied computing -- Operations research -- Decision analysis ; Bayesian methods ; Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents ; Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning ; Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning ; Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies ; Context modeling ; Employment ; Heuristic algorithms ; Inference mechanisms ; Information systems -- Information systems applications -- Decision support systems ; Intelligent agent ; Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms ; Matrices ; Public healthcare ; Uncertainty</subject><ispartof>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07), 2007, p.160-167</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4407277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4407277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bots, Pieter W. G.</creatorcontrib><title>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</title><title>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07)</title><addtitle>IAT</addtitle><description>Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain.</description><subject>Algebra</subject><subject>Applied computing -- Operations research -- Decision analysis</subject><subject>Bayesian methods</subject><subject>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</subject><subject>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning</subject><subject>Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning</subject><subject>Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies</subject><subject>Context modeling</subject><subject>Employment</subject><subject>Heuristic algorithms</subject><subject>Inference mechanisms</subject><subject>Information systems -- Information systems applications -- Decision support systems</subject><subject>Intelligent agent</subject><subject>Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms</subject><subject>Matrices</subject><subject>Public healthcare</subject><subject>Uncertainty</subject><isbn>0769530273</isbn><isbn>9780769530277</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNkDFPwzAUhC0hJKB0YmTxwISU8l7sxMmEogpKpSI6tLPluM9gSOMqDhL596QqP4BbbrjT6fQxdoMwQ4TyYVltZimAmgk8Y1eg8jITkCpxwaYxfsIoUWYS8JI9Vq1phugjD46_fje9Tyrbh46vQ-PtwOeh7emnj3wbffvO19RZOvQ-tHzRmcNHvGbnzjSRpn8-Ydvnp838JVm9LZbzapUYgUWfEAiXSszIIu12aAjzoq7Hh5SaFIwABxmgLZWDQhmVK5JCkJOlzYvClVJM2O1p1xORPnR-b7pBSwkqVWpM70-psXtdh_AVNYI-otAjCn1EoQXquvPkxvLdP8riF8KUXUA</recordid><startdate>20071102</startdate><enddate>20071102</enddate><creator>Bots, Pieter W. G.</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20071102</creationdate><title>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</title><author>Bots, Pieter W. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Applied computing -- Operations research -- Decision analysis</topic><topic>Bayesian methods</topic><topic>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</topic><topic>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning</topic><topic>Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning</topic><topic>Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies</topic><topic>Context modeling</topic><topic>Employment</topic><topic>Heuristic algorithms</topic><topic>Inference mechanisms</topic><topic>Information systems -- Information systems applications -- Decision support systems</topic><topic>Intelligent agent</topic><topic>Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms</topic><topic>Matrices</topic><topic>Public healthcare</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Bots, Pieter W. G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bots, Pieter W. G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of Multi-Actor Policy Contexts Using Perception Graphs</atitle><btitle>2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07)</btitle><stitle>IAT</stitle><date>2007-11-02</date><risdate>2007</risdate><spage>160</spage><epage>167</epage><pages>160-167</pages><isbn>0769530273</isbn><isbn>9780769530277</isbn><abstract>Policy making is a multi-actor process: it involves a variety of actors, each trying to further their own interests. How these actors decide and act largely depends on the way they perceive the policy problem. This paper describes Dynamic Actor Network Analysis (DANA), a graph-based method/tool to analyze a policy context by modeling how actors view a policy issue. Each actor view is modeled as a perception graph, a type of causal map that represents the (probabilistic) relations between goals, policy actions and external influences. Cross-comparison of these perception graphs reveals properties of the multi-actor policy network, such as factor relevance, resource dependency, conflict, and possible tradeoffs. Although DANA models technically have the potential for simulating policy scenarios, some interesting methodological problems remain.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/IAT.2007.31</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769530273
ispartof 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07), 2007, p.160-167
issn
language eng
recordid cdi_acm_books_10_1109_IAT_2007_31
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algebra
Applied computing -- Operations research -- Decision analysis
Bayesian methods
Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents
Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning
Computing methodologies -- Machine learning -- Machine learning approaches -- Rule learning
Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies
Context modeling
Employment
Heuristic algorithms
Inference mechanisms
Information systems -- Information systems applications -- Decision support systems
Intelligent agent
Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms
Matrices
Public healthcare
Uncertainty
title Analysis of Multi-Actor Policy Contexts Using Perception Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20Multi-Actor%20Policy%20Contexts%20Using%20Perception%20Graphs&rft.btitle=2007%20IEEE/WIC/ACM%20International%20Conference%20on%20Intelligent%20Agent%20Technology%20(IAT'07)&rft.au=Bots,%20Pieter%20W.%20G.&rft.date=2007-11-02&rft.spage=160&rft.epage=167&rft.pages=160-167&rft.isbn=0769530273&rft.isbn_list=9780769530277&rft_id=info:doi/10.1109/IAT.2007.31&rft_dat=%3Cacm_6IE%3Eacm_books_10_1109_IAT_2007_31%3C/acm_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a318t-e03f2415ec1edd1ae168bb007e2a20a30f0501c97f087a767e433ef49c688f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4407277&rfr_iscdi=true