Loading…
Error Correcting Output Coding-Based Conditional Random Fields for Web Page Prediction
Web page prefetching has been used efficiently to reduce the access latency problem of the Internet, its success mainly relies on the accuracy of Web page prediction. As powerful sequential learning models, Conditional Random Fields (CRFs) have been used successfully to improve the Web page predicti...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 746 |
container_issue | |
container_start_page | 743 |
container_title | |
container_volume | 1 |
creator | Guo, Yong Zhen Ramamohanarao, Kotagiri Park, Laurence A. F. |
description | Web page prefetching has been used efficiently to reduce the access latency problem of the Internet, its success mainly relies on the accuracy of Web page prediction. As powerful sequential learning models, Conditional Random Fields (CRFs) have been used successfully to improve the Web page prediction accuracy when the total number of unique Web pages is small. However, because the training complexity of CRFs is quadratic to the number of labels, when applied to a website with a large number of unique pages, the training of CRFs may become very slow and even intractable. In this paper, we decrease the training time and computational resource requirements of CRFs training by integrating error correcting output coding (ECOC) method. Moreover, since the performance of ECOC-based methods crucially depends on the ECOC code matrix in use, we employ a coding method, Search Coding, to design the code matrix of good quality. |
doi_str_mv | 10.1109/WIIAT.2008.148 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_acm_books_10_1109_WIIAT_2008_148_brief</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4740540</ieee_id><sourcerecordid>acm_books_10_1109_WIIAT_2008_148</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-2bdc33bacf3fcbca05853f77244f69d7bafa03cd085f5e1cc3fca070992563f73</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0hJFDJysLijSnlHNtxPJaqhUqVWqFCR8uflaFNKicd-Pe4lB_AdHrvfe6GB6F7AmNCQD5tF4vJZlwBNGPCmitUSNGAqCWnTNbkBhV9_wkAhFTAOLtFH7OUuoSnXUreDrHd4dVpOJ6GvHE5lc-69y6H1sUhdq3e4zfduu6A59HvXY9DPt56g9d65_E6eRftmbtD10Hve1_8zRF6n88209dyuXpZTCfLUpMahrIyzlJqtA00WGM18IbTIETFWKilE0YHDdQ6aHjgnlibMQ0CpKx4nUE6Qg-Xv9F7r44pHnT6Vkww4Axy-3hptT0o03VfvSKgzp7Uryd19qSyp0yW_yOVSdEH-gMm5Gmm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Error Correcting Output Coding-Based Conditional Random Fields for Web Page Prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guo, Yong Zhen ; Ramamohanarao, Kotagiri ; Park, Laurence A. F.</creator><creatorcontrib>Guo, Yong Zhen ; Ramamohanarao, Kotagiri ; Park, Laurence A. F.</creatorcontrib><description>Web page prefetching has been used efficiently to reduce the access latency problem of the Internet, its success mainly relies on the accuracy of Web page prediction. As powerful sequential learning models, Conditional Random Fields (CRFs) have been used successfully to improve the Web page prediction accuracy when the total number of unique Web pages is small. However, because the training complexity of CRFs is quadratic to the number of labels, when applied to a website with a large number of unique pages, the training of CRFs may become very slow and even intractable. In this paper, we decrease the training time and computational resource requirements of CRFs training by integrating error correcting output coding (ECOC) method. Moreover, since the performance of ECOC-based methods crucially depends on the ECOC code matrix in use, we employ a coding method, Search Coding, to design the code matrix of good quality.</description><identifier>ISBN: 9780769534961</identifier><identifier>ISBN: 0769534961</identifier><identifier>DOI: 10.1109/WIIAT.2008.148</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Accuracy ; Computer systems organization -- Dependable and fault-tolerant systems and networks ; Conditional Random Fields ; Delay ; Error Correcting Output Coding ; Error correction ; General and reference -- Cross-computing tools and techniques -- Performance ; Information systems -- Information retrieval ; Information systems -- Information storage systems ; Intelligent agent ; Internet ; Large-scale systems ; Networks -- Network performance evaluation ; Predictive models ; Prefetching ; Software and its engineering -- Software creation and management -- Software development techniques -- Error handling and recovery ; Web Page Prediction ; Web pages ; Web sites</subject><ispartof>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008, Vol.1, p.743-746</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4740540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4740540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Yong Zhen</creatorcontrib><creatorcontrib>Ramamohanarao, Kotagiri</creatorcontrib><creatorcontrib>Park, Laurence A. F.</creatorcontrib><title>Error Correcting Output Coding-Based Conditional Random Fields for Web Page Prediction</title><title>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</title><addtitle>WIIATW</addtitle><description>Web page prefetching has been used efficiently to reduce the access latency problem of the Internet, its success mainly relies on the accuracy of Web page prediction. As powerful sequential learning models, Conditional Random Fields (CRFs) have been used successfully to improve the Web page prediction accuracy when the total number of unique Web pages is small. However, because the training complexity of CRFs is quadratic to the number of labels, when applied to a website with a large number of unique pages, the training of CRFs may become very slow and even intractable. In this paper, we decrease the training time and computational resource requirements of CRFs training by integrating error correcting output coding (ECOC) method. Moreover, since the performance of ECOC-based methods crucially depends on the ECOC code matrix in use, we employ a coding method, Search Coding, to design the code matrix of good quality.</description><subject>Accuracy</subject><subject>Computer systems organization -- Dependable and fault-tolerant systems and networks</subject><subject>Conditional Random Fields</subject><subject>Delay</subject><subject>Error Correcting Output Coding</subject><subject>Error correction</subject><subject>General and reference -- Cross-computing tools and techniques -- Performance</subject><subject>Information systems -- Information retrieval</subject><subject>Information systems -- Information storage systems</subject><subject>Intelligent agent</subject><subject>Internet</subject><subject>Large-scale systems</subject><subject>Networks -- Network performance evaluation</subject><subject>Predictive models</subject><subject>Prefetching</subject><subject>Software and its engineering -- Software creation and management -- Software development techniques -- Error handling and recovery</subject><subject>Web Page Prediction</subject><subject>Web pages</subject><subject>Web sites</subject><isbn>9780769534961</isbn><isbn>0769534961</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNkD1PwzAQhi0hJFDJysLijSnlHNtxPJaqhUqVWqFCR8uflaFNKicd-Pe4lB_AdHrvfe6GB6F7AmNCQD5tF4vJZlwBNGPCmitUSNGAqCWnTNbkBhV9_wkAhFTAOLtFH7OUuoSnXUreDrHd4dVpOJ6GvHE5lc-69y6H1sUhdq3e4zfduu6A59HvXY9DPt56g9d65_E6eRftmbtD10Hve1_8zRF6n88209dyuXpZTCfLUpMahrIyzlJqtA00WGM18IbTIETFWKilE0YHDdQ6aHjgnlibMQ0CpKx4nUE6Qg-Xv9F7r44pHnT6Vkww4Axy-3hptT0o03VfvSKgzp7Uryd19qSyp0yW_yOVSdEH-gMm5Gmm</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Guo, Yong Zhen</creator><creator>Ramamohanarao, Kotagiri</creator><creator>Park, Laurence A. F.</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20081209</creationdate><title>Error Correcting Output Coding-Based Conditional Random Fields for Web Page Prediction</title><author>Guo, Yong Zhen ; Ramamohanarao, Kotagiri ; Park, Laurence A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-2bdc33bacf3fcbca05853f77244f69d7bafa03cd085f5e1cc3fca070992563f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accuracy</topic><topic>Computer systems organization -- Dependable and fault-tolerant systems and networks</topic><topic>Conditional Random Fields</topic><topic>Delay</topic><topic>Error Correcting Output Coding</topic><topic>Error correction</topic><topic>General and reference -- Cross-computing tools and techniques -- Performance</topic><topic>Information systems -- Information retrieval</topic><topic>Information systems -- Information storage systems</topic><topic>Intelligent agent</topic><topic>Internet</topic><topic>Large-scale systems</topic><topic>Networks -- Network performance evaluation</topic><topic>Predictive models</topic><topic>Prefetching</topic><topic>Software and its engineering -- Software creation and management -- Software development techniques -- Error handling and recovery</topic><topic>Web Page Prediction</topic><topic>Web pages</topic><topic>Web sites</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yong Zhen</creatorcontrib><creatorcontrib>Ramamohanarao, Kotagiri</creatorcontrib><creatorcontrib>Park, Laurence A. F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Yong Zhen</au><au>Ramamohanarao, Kotagiri</au><au>Park, Laurence A. F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Error Correcting Output Coding-Based Conditional Random Fields for Web Page Prediction</atitle><btitle>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</btitle><stitle>WIIATW</stitle><date>2008-12-09</date><risdate>2008</risdate><volume>1</volume><spage>743</spage><epage>746</epage><pages>743-746</pages><isbn>9780769534961</isbn><isbn>0769534961</isbn><abstract>Web page prefetching has been used efficiently to reduce the access latency problem of the Internet, its success mainly relies on the accuracy of Web page prediction. As powerful sequential learning models, Conditional Random Fields (CRFs) have been used successfully to improve the Web page prediction accuracy when the total number of unique Web pages is small. However, because the training complexity of CRFs is quadratic to the number of labels, when applied to a website with a large number of unique pages, the training of CRFs may become very slow and even intractable. In this paper, we decrease the training time and computational resource requirements of CRFs training by integrating error correcting output coding (ECOC) method. Moreover, since the performance of ECOC-based methods crucially depends on the ECOC code matrix in use, we employ a coding method, Search Coding, to design the code matrix of good quality.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/WIIAT.2008.148</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769534961 |
ispartof | 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008, Vol.1, p.743-746 |
issn | |
language | eng |
recordid | cdi_acm_books_10_1109_WIIAT_2008_148_brief |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Computer systems organization -- Dependable and fault-tolerant systems and networks Conditional Random Fields Delay Error Correcting Output Coding Error correction General and reference -- Cross-computing tools and techniques -- Performance Information systems -- Information retrieval Information systems -- Information storage systems Intelligent agent Internet Large-scale systems Networks -- Network performance evaluation Predictive models Prefetching Software and its engineering -- Software creation and management -- Software development techniques -- Error handling and recovery Web Page Prediction Web pages Web sites |
title | Error Correcting Output Coding-Based Conditional Random Fields for Web Page Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Error%20Correcting%20Output%20Coding-Based%20Conditional%20Random%20Fields%20for%20Web%20Page%20Prediction&rft.btitle=2008%20IEEE/WIC/ACM%20International%20Conference%20on%20Web%20Intelligence%20and%20Intelligent%20Agent%20Technology&rft.au=Guo,%20Yong%20Zhen&rft.date=2008-12-09&rft.volume=1&rft.spage=743&rft.epage=746&rft.pages=743-746&rft.isbn=9780769534961&rft.isbn_list=0769534961&rft_id=info:doi/10.1109/WIIAT.2008.148&rft_dat=%3Cacm_6IE%3Eacm_books_10_1109_WIIAT_2008_148%3C/acm_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a160t-2bdc33bacf3fcbca05853f77244f69d7bafa03cd085f5e1cc3fca070992563f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4740540&rfr_iscdi=true |