Loading…
Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation
The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: |
Computing methodologies
> Artificial intelligence
> Distributed artificial intelligence
> Intelligent agents
Computing methodologies
> Artificial intelligence
> Knowledge representation and reasoning
> Probabilistic reasoning
Computing methodologies
> Artificial intelligence
> Knowledge representation and reasoning
> Vagueness and fuzzy logic
|
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 339 |
container_issue | |
container_start_page | 336 |
container_title | |
container_volume | 2 |
creator | Dimou, Christos Falelakis, Manolis Symeonidis, Andreas L. Delopoulos, Anastasios Mitkas, Pericles A. |
description | The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case. |
doi_str_mv | 10.1109/WIIAT.2008.374 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_acm_books_10_1109_WIIAT_2008_374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4740645</ieee_id><sourcerecordid>acm_books_10_1109_WIIAT_2008_374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-174d8a86e15cbbdbfb7336c8f38c07a111e99febdc0ef5a78a7b8dae219b11703</originalsourceid><addsrcrecordid>eNqNkEFLAzEUhAMiKLVXL15y87T1vW52kxxLabVQqYeKx5BkX8pqu1uyqdD-erfWH-BpGGYYho-xe4QRIuinj8Vish6NAdQol-KKDbVUIEtd5EKXeMOGXfcJAIhjEIW4ZS_TtulSPPhUNxu-2qd6Z7d8fjidjvyVUqw9X0eijoc28smGmsTfKPZmZxtPfPZttweb6ra5Y9fBbjsa_umAvc9n6-lLtlw9L6aTZWaxhJShFJWyqiQsvHOVC07meelVyJUHaRGRtA7kKg8UCiuVlU5VlsaoHaKEfMAeLrs1EZl97P_GoxFSQCmKPs0uqfU749r2qzMI5kzG_JIxZzKmJ2NcrCn0_cf_9fMfU_hlZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dimou, Christos ; Falelakis, Manolis ; Symeonidis, Andreas L. ; Delopoulos, Anastasios ; Mitkas, Pericles A.</creator><creatorcontrib>Dimou, Christos ; Falelakis, Manolis ; Symeonidis, Andreas L. ; Delopoulos, Anastasios ; Mitkas, Pericles A.</creatorcontrib><description>The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case.</description><identifier>ISBN: 9780769534961</identifier><identifier>ISBN: 0769534961</identifier><identifier>DOI: 10.1109/WIIAT.2008.374</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Aggregates ; Application software ; Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents ; Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning ; Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic ; Current measurement ; fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Intelligent agent ; Intelligent agents ; Multiagent systems ; Organizing ; performance evaluation ; Process design ; Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks ; Testing</subject><ispartof>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008, Vol.2, p.336-339</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4740645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4740645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dimou, Christos</creatorcontrib><creatorcontrib>Falelakis, Manolis</creatorcontrib><creatorcontrib>Symeonidis, Andreas L.</creatorcontrib><creatorcontrib>Delopoulos, Anastasios</creatorcontrib><creatorcontrib>Mitkas, Pericles A.</creatorcontrib><title>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</title><title>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</title><addtitle>WIIATW</addtitle><description>The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case.</description><subject>Aggregates</subject><subject>Application software</subject><subject>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</subject><subject>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning</subject><subject>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic</subject><subject>Current measurement</subject><subject>fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Intelligent agent</subject><subject>Intelligent agents</subject><subject>Multiagent systems</subject><subject>Organizing</subject><subject>performance evaluation</subject><subject>Process design</subject><subject>Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks</subject><subject>Testing</subject><isbn>9780769534961</isbn><isbn>0769534961</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNkEFLAzEUhAMiKLVXL15y87T1vW52kxxLabVQqYeKx5BkX8pqu1uyqdD-erfWH-BpGGYYho-xe4QRIuinj8Vish6NAdQol-KKDbVUIEtd5EKXeMOGXfcJAIhjEIW4ZS_TtulSPPhUNxu-2qd6Z7d8fjidjvyVUqw9X0eijoc28smGmsTfKPZmZxtPfPZttweb6ra5Y9fBbjsa_umAvc9n6-lLtlw9L6aTZWaxhJShFJWyqiQsvHOVC07meelVyJUHaRGRtA7kKg8UCiuVlU5VlsaoHaKEfMAeLrs1EZl97P_GoxFSQCmKPs0uqfU749r2qzMI5kzG_JIxZzKmJ2NcrCn0_cf_9fMfU_hlZA</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Dimou, Christos</creator><creator>Falelakis, Manolis</creator><creator>Symeonidis, Andreas L.</creator><creator>Delopoulos, Anastasios</creator><creator>Mitkas, Pericles A.</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20081209</creationdate><title>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</title><author>Dimou, Christos ; Falelakis, Manolis ; Symeonidis, Andreas L. ; Delopoulos, Anastasios ; Mitkas, Pericles A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-174d8a86e15cbbdbfb7336c8f38c07a111e99febdc0ef5a78a7b8dae219b11703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aggregates</topic><topic>Application software</topic><topic>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</topic><topic>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning</topic><topic>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic</topic><topic>Current measurement</topic><topic>fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Intelligent agent</topic><topic>Intelligent agents</topic><topic>Multiagent systems</topic><topic>Organizing</topic><topic>performance evaluation</topic><topic>Process design</topic><topic>Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dimou, Christos</creatorcontrib><creatorcontrib>Falelakis, Manolis</creatorcontrib><creatorcontrib>Symeonidis, Andreas L.</creatorcontrib><creatorcontrib>Delopoulos, Anastasios</creatorcontrib><creatorcontrib>Mitkas, Pericles A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dimou, Christos</au><au>Falelakis, Manolis</au><au>Symeonidis, Andreas L.</au><au>Delopoulos, Anastasios</au><au>Mitkas, Pericles A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</atitle><btitle>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</btitle><stitle>WIIATW</stitle><date>2008-12-09</date><risdate>2008</risdate><volume>2</volume><spage>336</spage><epage>339</epage><pages>336-339</pages><isbn>9780769534961</isbn><isbn>0769534961</isbn><abstract>The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/WIIAT.2008.374</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769534961 |
ispartof | 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008, Vol.2, p.336-339 |
issn | |
language | eng |
recordid | cdi_acm_books_10_1109_WIIAT_2008_374 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aggregates Application software Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic Current measurement fuzzy logic Fuzzy sets Fuzzy systems Intelligent agent Intelligent agents Multiagent systems Organizing performance evaluation Process design Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks Testing |
title | Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constructing%20Optimal%20Fuzzy%20Metric%20Trees%20for%20Agent%20Performance%20Evaluation&rft.btitle=2008%20IEEE/WIC/ACM%20International%20Conference%20on%20Web%20Intelligence%20and%20Intelligent%20Agent%20Technology&rft.au=Dimou,%20Christos&rft.date=2008-12-09&rft.volume=2&rft.spage=336&rft.epage=339&rft.pages=336-339&rft.isbn=9780769534961&rft.isbn_list=0769534961&rft_id=info:doi/10.1109/WIIAT.2008.374&rft_dat=%3Cacm_6IE%3Eacm_books_10_1109_WIIAT_2008_374%3C/acm_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a160t-174d8a86e15cbbdbfb7336c8f38c07a111e99febdc0ef5a78a7b8dae219b11703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4740645&rfr_iscdi=true |