Loading…

Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation

The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach...

Full description

Saved in:
Bibliographic Details
Main Authors: Dimou, Christos, Falelakis, Manolis, Symeonidis, Andreas L., Delopoulos, Anastasios, Mitkas, Pericles A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 339
container_issue
container_start_page 336
container_title
container_volume 2
creator Dimou, Christos
Falelakis, Manolis
Symeonidis, Andreas L.
Delopoulos, Anastasios
Mitkas, Pericles A.
description The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case.
doi_str_mv 10.1109/WIIAT.2008.374
format conference_proceeding
fullrecord <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_acm_books_10_1109_WIIAT_2008_374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4740645</ieee_id><sourcerecordid>acm_books_10_1109_WIIAT_2008_374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-174d8a86e15cbbdbfb7336c8f38c07a111e99febdc0ef5a78a7b8dae219b11703</originalsourceid><addsrcrecordid>eNqNkEFLAzEUhAMiKLVXL15y87T1vW52kxxLabVQqYeKx5BkX8pqu1uyqdD-erfWH-BpGGYYho-xe4QRIuinj8Vish6NAdQol-KKDbVUIEtd5EKXeMOGXfcJAIhjEIW4ZS_TtulSPPhUNxu-2qd6Z7d8fjidjvyVUqw9X0eijoc28smGmsTfKPZmZxtPfPZttweb6ra5Y9fBbjsa_umAvc9n6-lLtlw9L6aTZWaxhJShFJWyqiQsvHOVC07meelVyJUHaRGRtA7kKg8UCiuVlU5VlsaoHaKEfMAeLrs1EZl97P_GoxFSQCmKPs0uqfU749r2qzMI5kzG_JIxZzKmJ2NcrCn0_cf_9fMfU_hlZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dimou, Christos ; Falelakis, Manolis ; Symeonidis, Andreas L. ; Delopoulos, Anastasios ; Mitkas, Pericles A.</creator><creatorcontrib>Dimou, Christos ; Falelakis, Manolis ; Symeonidis, Andreas L. ; Delopoulos, Anastasios ; Mitkas, Pericles A.</creatorcontrib><description>The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case.</description><identifier>ISBN: 9780769534961</identifier><identifier>ISBN: 0769534961</identifier><identifier>DOI: 10.1109/WIIAT.2008.374</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Aggregates ; Application software ; Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents ; Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning ; Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic ; Current measurement ; fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Intelligent agent ; Intelligent agents ; Multiagent systems ; Organizing ; performance evaluation ; Process design ; Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks ; Testing</subject><ispartof>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008, Vol.2, p.336-339</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4740645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4740645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dimou, Christos</creatorcontrib><creatorcontrib>Falelakis, Manolis</creatorcontrib><creatorcontrib>Symeonidis, Andreas L.</creatorcontrib><creatorcontrib>Delopoulos, Anastasios</creatorcontrib><creatorcontrib>Mitkas, Pericles A.</creatorcontrib><title>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</title><title>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</title><addtitle>WIIATW</addtitle><description>The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case.</description><subject>Aggregates</subject><subject>Application software</subject><subject>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</subject><subject>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning</subject><subject>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic</subject><subject>Current measurement</subject><subject>fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Intelligent agent</subject><subject>Intelligent agents</subject><subject>Multiagent systems</subject><subject>Organizing</subject><subject>performance evaluation</subject><subject>Process design</subject><subject>Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks</subject><subject>Testing</subject><isbn>9780769534961</isbn><isbn>0769534961</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNkEFLAzEUhAMiKLVXL15y87T1vW52kxxLabVQqYeKx5BkX8pqu1uyqdD-erfWH-BpGGYYho-xe4QRIuinj8Vish6NAdQol-KKDbVUIEtd5EKXeMOGXfcJAIhjEIW4ZS_TtulSPPhUNxu-2qd6Z7d8fjidjvyVUqw9X0eijoc28smGmsTfKPZmZxtPfPZttweb6ra5Y9fBbjsa_umAvc9n6-lLtlw9L6aTZWaxhJShFJWyqiQsvHOVC07meelVyJUHaRGRtA7kKg8UCiuVlU5VlsaoHaKEfMAeLrs1EZl97P_GoxFSQCmKPs0uqfU749r2qzMI5kzG_JIxZzKmJ2NcrCn0_cf_9fMfU_hlZA</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Dimou, Christos</creator><creator>Falelakis, Manolis</creator><creator>Symeonidis, Andreas L.</creator><creator>Delopoulos, Anastasios</creator><creator>Mitkas, Pericles A.</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20081209</creationdate><title>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</title><author>Dimou, Christos ; Falelakis, Manolis ; Symeonidis, Andreas L. ; Delopoulos, Anastasios ; Mitkas, Pericles A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-174d8a86e15cbbdbfb7336c8f38c07a111e99febdc0ef5a78a7b8dae219b11703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aggregates</topic><topic>Application software</topic><topic>Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents</topic><topic>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning</topic><topic>Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic</topic><topic>Current measurement</topic><topic>fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Intelligent agent</topic><topic>Intelligent agents</topic><topic>Multiagent systems</topic><topic>Organizing</topic><topic>performance evaluation</topic><topic>Process design</topic><topic>Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dimou, Christos</creatorcontrib><creatorcontrib>Falelakis, Manolis</creatorcontrib><creatorcontrib>Symeonidis, Andreas L.</creatorcontrib><creatorcontrib>Delopoulos, Anastasios</creatorcontrib><creatorcontrib>Mitkas, Pericles A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dimou, Christos</au><au>Falelakis, Manolis</au><au>Symeonidis, Andreas L.</au><au>Delopoulos, Anastasios</au><au>Mitkas, Pericles A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation</atitle><btitle>2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</btitle><stitle>WIIATW</stitle><date>2008-12-09</date><risdate>2008</risdate><volume>2</volume><spage>336</spage><epage>339</epage><pages>336-339</pages><isbn>9780769534961</isbn><isbn>0769534961</isbn><abstract>The field of multi-agent systems has reached a significant degree of maturity with respect to frameworks, standards and infrastructures. Focus is now shifted to performance evaluation of real-world applications, in order to quantify the practical benefits and drawbacks of agent systems. Our approach extends current work on generic evaluation methodologies for agents by employing fuzzy weighted trees for organizing evaluation-specific concepts/metrics and linguistic terms to intuitively represent and aggregate measurement information.Furthermore, we introduce meta-metrics that measure the validity and complexity of the contribution of each metric in the overall performance evaluation. These are all incorporated for selecting optimal subsets of metrics and designing the evaluation process incompliance with the demands/restrictions of various evaluation setups, thus minimizing intervention by domain experts. The applicability of the proposed methodology is demonstrated through the evaluation of a real-world test case.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/WIIAT.2008.374</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769534961
ispartof 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008, Vol.2, p.336-339
issn
language eng
recordid cdi_acm_books_10_1109_WIIAT_2008_374
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
Application software
Computing methodologies -- Artificial intelligence -- Distributed artificial intelligence -- Intelligent agents
Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Probabilistic reasoning
Computing methodologies -- Artificial intelligence -- Knowledge representation and reasoning -- Vagueness and fuzzy logic
Current measurement
fuzzy logic
Fuzzy sets
Fuzzy systems
Intelligent agent
Intelligent agents
Multiagent systems
Organizing
performance evaluation
Process design
Software and its engineering -- Software notations and tools -- General programming languages -- Language features -- Frameworks
Testing
title Constructing Optimal Fuzzy Metric Trees for Agent Performance Evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constructing%20Optimal%20Fuzzy%20Metric%20Trees%20for%20Agent%20Performance%20Evaluation&rft.btitle=2008%20IEEE/WIC/ACM%20International%20Conference%20on%20Web%20Intelligence%20and%20Intelligent%20Agent%20Technology&rft.au=Dimou,%20Christos&rft.date=2008-12-09&rft.volume=2&rft.spage=336&rft.epage=339&rft.pages=336-339&rft.isbn=9780769534961&rft.isbn_list=0769534961&rft_id=info:doi/10.1109/WIIAT.2008.374&rft_dat=%3Cacm_6IE%3Eacm_books_10_1109_WIIAT_2008_374%3C/acm_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a160t-174d8a86e15cbbdbfb7336c8f38c07a111e99febdc0ef5a78a7b8dae219b11703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4740645&rfr_iscdi=true