Loading…

Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type

We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first pr...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2016-09, Vol.16 (9), p.5349-5358
Main Authors: Engelkemier, Joshua, Green, Lance M., McDougald, Roy N., McCandless, Gregory T., Chan, Julia Y., Fredrickson, Daniel C.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5358
container_issue 9
container_start_page 5349
container_title Crystal growth & design
container_volume 16
creator Engelkemier, Joshua
Green, Lance M.
McDougald, Roy N.
McCandless, Gregory T.
Chan, Julia Y.
Fredrickson, Daniel C.
description We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems.
doi_str_mv 10.1021/acs.cgd.6b00855
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_cgd_6b00855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a94742750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a191t-48d215ad9974e335519fdc39a629aaec7a5a7d213dee1dec8f80b842d07f5b593</originalsourceid><addsrcrecordid>eNo1kE1Lw0AQhhdRsFbPXueo2NTdbLZJBA8S-iFULTaew3R30qbEbEk2SM_-cdOqpxke3pkXHsauBR8K7ot71M1Qr81wtOI8UuqE9YTyIy9UXJ3-70Ekz9lF02w55-FIyh77XrTOFdUaljqdooKbFB5hQgNI7ABei1uwFbgNwQvuHmBmv2BcknZ1RxPbVq4BrAwkG_osNJawqKlp2ppgucEdHQ-XDldFWbg9vGO1JrD5Ec9sYg996X5Hl-wsx7Khq7_ZZx-TcZrMvPnb9Dl5mnsoYuG8IDK-UGjiOAxISqVEnBstYxz5MSLpEBWGXUQaImFIR3nEV1HgGx7maqVi2Wd3v387VdnWtnXVtWWCZwd_2QF2_rI_f_IHg3li7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Engelkemier, Joshua ; Green, Lance M. ; McDougald, Roy N. ; McCandless, Gregory T. ; Chan, Julia Y. ; Fredrickson, Daniel C.</creator><creatorcontrib>Engelkemier, Joshua ; Green, Lance M. ; McDougald, Roy N. ; McCandless, Gregory T. ; Chan, Julia Y. ; Fredrickson, Daniel C.</creatorcontrib><description>We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.6b00855</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Crystal growth &amp; design, 2016-09, Vol.16 (9), p.5349-5358</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Engelkemier, Joshua</creatorcontrib><creatorcontrib>Green, Lance M.</creatorcontrib><creatorcontrib>McDougald, Roy N.</creatorcontrib><creatorcontrib>McCandless, Gregory T.</creatorcontrib><creatorcontrib>Chan, Julia Y.</creatorcontrib><creatorcontrib>Fredrickson, Daniel C.</creatorcontrib><title>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1kE1Lw0AQhhdRsFbPXueo2NTdbLZJBA8S-iFULTaew3R30qbEbEk2SM_-cdOqpxke3pkXHsauBR8K7ot71M1Qr81wtOI8UuqE9YTyIy9UXJ3-70Ekz9lF02w55-FIyh77XrTOFdUaljqdooKbFB5hQgNI7ABei1uwFbgNwQvuHmBmv2BcknZ1RxPbVq4BrAwkG_osNJawqKlp2ppgucEdHQ-XDldFWbg9vGO1JrD5Ec9sYg996X5Hl-wsx7Khq7_ZZx-TcZrMvPnb9Dl5mnsoYuG8IDK-UGjiOAxISqVEnBstYxz5MSLpEBWGXUQaImFIR3nEV1HgGx7maqVi2Wd3v387VdnWtnXVtWWCZwd_2QF2_rI_f_IHg3li7g</recordid><startdate>20160907</startdate><enddate>20160907</enddate><creator>Engelkemier, Joshua</creator><creator>Green, Lance M.</creator><creator>McDougald, Roy N.</creator><creator>McCandless, Gregory T.</creator><creator>Chan, Julia Y.</creator><creator>Fredrickson, Daniel C.</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20160907</creationdate><title>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</title><author>Engelkemier, Joshua ; Green, Lance M. ; McDougald, Roy N. ; McCandless, Gregory T. ; Chan, Julia Y. ; Fredrickson, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a191t-48d215ad9974e335519fdc39a629aaec7a5a7d213dee1dec8f80b842d07f5b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelkemier, Joshua</creatorcontrib><creatorcontrib>Green, Lance M.</creatorcontrib><creatorcontrib>McDougald, Roy N.</creatorcontrib><creatorcontrib>McCandless, Gregory T.</creatorcontrib><creatorcontrib>Chan, Julia Y.</creatorcontrib><creatorcontrib>Fredrickson, Daniel C.</creatorcontrib><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelkemier, Joshua</au><au>Green, Lance M.</au><au>McDougald, Roy N.</au><au>McCandless, Gregory T.</au><au>Chan, Julia Y.</au><au>Fredrickson, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2016-09-07</date><risdate>2016</risdate><volume>16</volume><issue>9</issue><spage>5349</spage><epage>5358</epage><pages>5349-5358</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.6b00855</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2016-09, Vol.16 (9), p.5349-5358
issn 1528-7483
1528-7505
language eng
recordid cdi_acs_journals_10_1021_acs_cgd_6b00855
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Putting%20ScTGa5%20(T%20=%20Fe,%20Co,%20Ni)%20on%20the%20Map:%20How%20Electron%20Counts%20and%20Chemical%20Pressure%20Shape%20the%20Stability%20Range%20of%20the%20HoCoGa5%20Type&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Engelkemier,%20Joshua&rft.date=2016-09-07&rft.volume=16&rft.issue=9&rft.spage=5349&rft.epage=5358&rft.pages=5349-5358&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.6b00855&rft_dat=%3Cacs%3Ea94742750%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a191t-48d215ad9974e335519fdc39a629aaec7a5a7d213dee1dec8f80b842d07f5b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true