Loading…
Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type
We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first pr...
Saved in:
Published in: | Crystal growth & design 2016-09, Vol.16 (9), p.5349-5358 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5358 |
container_issue | 9 |
container_start_page | 5349 |
container_title | Crystal growth & design |
container_volume | 16 |
creator | Engelkemier, Joshua Green, Lance M. McDougald, Roy N. McCandless, Gregory T. Chan, Julia Y. Fredrickson, Daniel C. |
description | We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems. |
doi_str_mv | 10.1021/acs.cgd.6b00855 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_cgd_6b00855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a94742750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a191t-48d215ad9974e335519fdc39a629aaec7a5a7d213dee1dec8f80b842d07f5b593</originalsourceid><addsrcrecordid>eNo1kE1Lw0AQhhdRsFbPXueo2NTdbLZJBA8S-iFULTaew3R30qbEbEk2SM_-cdOqpxke3pkXHsauBR8K7ot71M1Qr81wtOI8UuqE9YTyIy9UXJ3-70Ekz9lF02w55-FIyh77XrTOFdUaljqdooKbFB5hQgNI7ABei1uwFbgNwQvuHmBmv2BcknZ1RxPbVq4BrAwkG_osNJawqKlp2ppgucEdHQ-XDldFWbg9vGO1JrD5Ec9sYg996X5Hl-wsx7Khq7_ZZx-TcZrMvPnb9Dl5mnsoYuG8IDK-UGjiOAxISqVEnBstYxz5MSLpEBWGXUQaImFIR3nEV1HgGx7maqVi2Wd3v387VdnWtnXVtWWCZwd_2QF2_rI_f_IHg3li7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Engelkemier, Joshua ; Green, Lance M. ; McDougald, Roy N. ; McCandless, Gregory T. ; Chan, Julia Y. ; Fredrickson, Daniel C.</creator><creatorcontrib>Engelkemier, Joshua ; Green, Lance M. ; McDougald, Roy N. ; McCandless, Gregory T. ; Chan, Julia Y. ; Fredrickson, Daniel C.</creatorcontrib><description>We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.6b00855</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Crystal growth & design, 2016-09, Vol.16 (9), p.5349-5358</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Engelkemier, Joshua</creatorcontrib><creatorcontrib>Green, Lance M.</creatorcontrib><creatorcontrib>McDougald, Roy N.</creatorcontrib><creatorcontrib>McCandless, Gregory T.</creatorcontrib><creatorcontrib>Chan, Julia Y.</creatorcontrib><creatorcontrib>Fredrickson, Daniel C.</creatorcontrib><title>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1kE1Lw0AQhhdRsFbPXueo2NTdbLZJBA8S-iFULTaew3R30qbEbEk2SM_-cdOqpxke3pkXHsauBR8K7ot71M1Qr81wtOI8UuqE9YTyIy9UXJ3-70Ekz9lF02w55-FIyh77XrTOFdUaljqdooKbFB5hQgNI7ABei1uwFbgNwQvuHmBmv2BcknZ1RxPbVq4BrAwkG_osNJawqKlp2ppgucEdHQ-XDldFWbg9vGO1JrD5Ec9sYg996X5Hl-wsx7Khq7_ZZx-TcZrMvPnb9Dl5mnsoYuG8IDK-UGjiOAxISqVEnBstYxz5MSLpEBWGXUQaImFIR3nEV1HgGx7maqVi2Wd3v387VdnWtnXVtWWCZwd_2QF2_rI_f_IHg3li7g</recordid><startdate>20160907</startdate><enddate>20160907</enddate><creator>Engelkemier, Joshua</creator><creator>Green, Lance M.</creator><creator>McDougald, Roy N.</creator><creator>McCandless, Gregory T.</creator><creator>Chan, Julia Y.</creator><creator>Fredrickson, Daniel C.</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20160907</creationdate><title>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</title><author>Engelkemier, Joshua ; Green, Lance M. ; McDougald, Roy N. ; McCandless, Gregory T. ; Chan, Julia Y. ; Fredrickson, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a191t-48d215ad9974e335519fdc39a629aaec7a5a7d213dee1dec8f80b842d07f5b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelkemier, Joshua</creatorcontrib><creatorcontrib>Green, Lance M.</creatorcontrib><creatorcontrib>McDougald, Roy N.</creatorcontrib><creatorcontrib>McCandless, Gregory T.</creatorcontrib><creatorcontrib>Chan, Julia Y.</creatorcontrib><creatorcontrib>Fredrickson, Daniel C.</creatorcontrib><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelkemier, Joshua</au><au>Green, Lance M.</au><au>McDougald, Roy N.</au><au>McCandless, Gregory T.</au><au>Chan, Julia Y.</au><au>Fredrickson, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2016-09-07</date><risdate>2016</risdate><volume>16</volume><issue>9</issue><spage>5349</spage><epage>5358</epage><pages>5349-5358</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>We explore the factors stabilizing one member of the diverse structures encountered in Ln–T–E systems (Ln = lanthanide or similar early d-block element, T = transition metal, E = p-block element): the HoCoGa5 type, an arrangement of atoms associated with unconventional superconductivity. We first probe the boundaries of its stability range through the growth and characterization of ScTGa5 crystals (T = Fe, Co, Ni). After confirming that these compounds adopt the HoCoGa5 type, we analyze their electronic structure using density functional theory (DFT) and DFT-calibrated Hückel calculations. The observed valence electron count range of the HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Ln atoms and n = 2 for the T sites. The role of atomic sizes is investigated with DFT-chemical pressure (DFT-CP) analysis of ScNiGa5, which reveals negative pressures within the Ga sublattice as it stretches to accommodate the Sc and T atoms. This CP scheme is consistent with HoCoGa5-type gallides only being observed for relatively small Ln and T atoms. These conclusions account for the relative positions of the HoCoGa5, BaMg4Si3, and Ce2NiGa10 types in a structure map, demonstrating how combining the 18-n and CP schemes can guide our understanding of Ln–T–E systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.6b00855</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2016-09, Vol.16 (9), p.5349-5358 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_cgd_6b00855 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Putting ScTGa5 (T = Fe, Co, Ni) on the Map: How Electron Counts and Chemical Pressure Shape the Stability Range of the HoCoGa5 Type |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Putting%20ScTGa5%20(T%20=%20Fe,%20Co,%20Ni)%20on%20the%20Map:%20How%20Electron%20Counts%20and%20Chemical%20Pressure%20Shape%20the%20Stability%20Range%20of%20the%20HoCoGa5%20Type&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Engelkemier,%20Joshua&rft.date=2016-09-07&rft.volume=16&rft.issue=9&rft.spage=5349&rft.epage=5358&rft.pages=5349-5358&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.6b00855&rft_dat=%3Cacs%3Ea94742750%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a191t-48d215ad9974e335519fdc39a629aaec7a5a7d213dee1dec8f80b842d07f5b593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |