Loading…
HgCuPS4: An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-like Structure
Infrared nonlinear optical (IR-NLO) crystals possessing excellent comprehensive performance are highly desirable, yet their preparation remains extremely challenging. Particularly, inorganic chalcogenides with diamond-like (DL) structures provide a tunable material platform for their structural desi...
Saved in:
Published in: | Chemistry of materials 2020-05, Vol.32 (10), p.4331-4339 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Infrared nonlinear optical (IR-NLO) crystals possessing excellent comprehensive performance are highly desirable, yet their preparation remains extremely challenging. Particularly, inorganic chalcogenides with diamond-like (DL) structures provide a tunable material platform for their structural design and functional control. In this work, a strategy involving the construction of chalcogenides with DL structures using the strong polarizability of metal cations has been put forward; thus, a quaternary Hg-containing metal sulfide HgCuPS4 has been successfully discovered by the high-temperature solid-state technology. A remarkable structural characteristic of HgCuPS4 is the three-dimensional (3D) defect DL framework constructed by vertex-sharing alignments of asymmetric building motifs (ABMs). The combination of the unique defect DL structure and the strong polarizability of the Hg2+ cations enables such compound to achieve phase matchability in the IR range with a high laser-induced damage threshold (4.2 × AgGaS2) and a strong second harmonic generation response (dij = 6.5 × AgGaS2), the best among the quaternary DL chalcogenides reported so far. Moreover, the detailed local dipole moment calculations and the theoretical results based on the length-gauge formalism elucidate that the very high dij value of HgCuPS4 originates from the combined effects of distorted [HgS4], [CuS4], and [PS4] ABMs, that is, the 3D defect DL structure. This discovery can effectively help understand and design other promising defect DL metal chalcogenides toward future high-performing IR-NLO applications. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.0c01258 |