Loading…
Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type La2NiO3F2 within Fluoride-Ion Batteries
Within this article, it is shown that an electrochemical defluorination and additional fluorination of Ruddlesden–Popper-type La2NiO3F2 is possible within all-solid-state fluoride-ion batteries. Structural changes within the reduced and oxidized phases have been examined by X-ray diffraction studies...
Saved in:
Published in: | Chemistry of materials 2021-01, Vol.33 (2), p.499-512 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | eng ; jpn |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within this article, it is shown that an electrochemical defluorination and additional fluorination of Ruddlesden–Popper-type La2NiO3F2 is possible within all-solid-state fluoride-ion batteries. Structural changes within the reduced and oxidized phases have been examined by X-ray diffraction studies at different states of charging and discharging. The synthesis of the oxidized phase La2NiO3F2+x proved to be successful by structural analysis using both X-ray powder diffraction and automated electron diffraction tomography techniques. The structural reversibility on re-fluorinating and re-defluorinating is also demonstrated. Moreover, the influence of different sequences of consecutive reduction and oxidation steps on the formed phases has been investigated. The observed structural changes have been compared to changes in phases obtained via other topochemical modification approaches such as hydride-based reduction and oxidative fluorination using F2 gas, highlighting the potential of such electrochemical reactions as alternative synthesis routes. Furthermore, the electrochemical routes represent safe and controllable synthesis approaches for novel phases, which cannot be synthesized via other topochemical methods. Additionally, side reactions, occurring alongside the desired electrochemical reactions, have been addressed and the cycling performance has been studied. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.0c01762 |