Loading…

Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights

Room-temperature perovskite nanocrystal syntheses have previously lacked the size tunability attainable through high-temperature methods. Herein, we outline a scalable approach whereby the nucleation and growth of CsPbBr3 nanocrystals (NCs) can be decoupled and controlled at room temperature by util...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2021-04, Vol.33 (7), p.2387-2397
Main Authors: Brown, Alasdair A. M, Vashishtha, Parth, Hooper, Thomas J. N, Ng, Yan Fong, Nutan, Gautam V, Fang, Yanan, Giovanni, David, Tey, Ju Nie, Jiang, Liudi, Damodaran, Bahulayan, Sum, Tze Chien, Pu, Suan Hui, Mhaisalkar, Subodh G, Mathews, Nripan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2397
container_issue 7
container_start_page 2387
container_title Chemistry of materials
container_volume 33
creator Brown, Alasdair A. M
Vashishtha, Parth
Hooper, Thomas J. N
Ng, Yan Fong
Nutan, Gautam V
Fang, Yanan
Giovanni, David
Tey, Ju Nie
Jiang, Liudi
Damodaran, Bahulayan
Sum, Tze Chien
Pu, Suan Hui
Mhaisalkar, Subodh G
Mathews, Nripan
description Room-temperature perovskite nanocrystal syntheses have previously lacked the size tunability attainable through high-temperature methods. Herein, we outline a scalable approach whereby the nucleation and growth of CsPbBr3 nanocrystals (NCs) can be decoupled and controlled at room temperature by utilizing different ligands. We employed octylphosphonic acid (OPA) ligands to regulate the critical radius and the NC growth rate. The subsequent addition of a bulkier didodecyldimethylammonium bromide ligand quenches the NC growth, defining the reaction duration. Management of these three variables enables precise tuning of the NC diameter between 6.8 and 13.6 nm. The photoluminescence quantum yield of the NCs remains above 80% for all sizes even after thorough antisolvent purification. The use of hydrogen-bonding OPA ligands enhances quantum confinement effects, characterized by strong, well-resolved absorption peaks. Solution and solid-state nuclear magnetic resonance spectra confirmed the effective removal of unbound ligands during purification and the presence of a hydrogen-bonded network of OPA ligands on the surface of the purified NCs. Overall, this approach has the potential to facilitate a broad range of future endeavors from studies of hot carrier dynamics to both optically and electrically driven device applications.
doi_str_mv 10.1021/acs.chemmater.0c04569
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_0c04569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b617401866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-63580043ae40628a6883fa32c57a6d292e30eae500de037f15782de702bb3c8a3</originalsourceid><addsrcrecordid>eNo9kN1Kw0AUhBdRsFYfQdgXSD27m5-tdxq0FooWW6_DyebEpDZZ2d0q9elNsXg1MDAzzMfYtYCJAClu0PiJaajrMJCbgIE4SacnbCQSCVECIE_ZCPQ0i-IsSc_ZhfcbADFE9YiFpSPTeuK57YOzW25rnvtlee8UX5KzX_6jDcSfsbfG7X3ALZ85-x0ajoG_WtvxNXWf5DDsHN3yVftDfL3rsWy3bdhz7Cu-2vehodAaPu99-94Ef8nOatx6ujrqmL09Pqzzp2jxMpvnd4sIZRyHKFWJBogVUgyp1JhqrWpU0iQZppWcSlJASMPDikBltUgyLSvKQJalMhrVmIm_3oFQsbE71w9rhYDigK04mP_YiiM29QsvOmX-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Brown, Alasdair A. M ; Vashishtha, Parth ; Hooper, Thomas J. N ; Ng, Yan Fong ; Nutan, Gautam V ; Fang, Yanan ; Giovanni, David ; Tey, Ju Nie ; Jiang, Liudi ; Damodaran, Bahulayan ; Sum, Tze Chien ; Pu, Suan Hui ; Mhaisalkar, Subodh G ; Mathews, Nripan</creator><creatorcontrib>Brown, Alasdair A. M ; Vashishtha, Parth ; Hooper, Thomas J. N ; Ng, Yan Fong ; Nutan, Gautam V ; Fang, Yanan ; Giovanni, David ; Tey, Ju Nie ; Jiang, Liudi ; Damodaran, Bahulayan ; Sum, Tze Chien ; Pu, Suan Hui ; Mhaisalkar, Subodh G ; Mathews, Nripan</creatorcontrib><description>Room-temperature perovskite nanocrystal syntheses have previously lacked the size tunability attainable through high-temperature methods. Herein, we outline a scalable approach whereby the nucleation and growth of CsPbBr3 nanocrystals (NCs) can be decoupled and controlled at room temperature by utilizing different ligands. We employed octylphosphonic acid (OPA) ligands to regulate the critical radius and the NC growth rate. The subsequent addition of a bulkier didodecyldimethylammonium bromide ligand quenches the NC growth, defining the reaction duration. Management of these three variables enables precise tuning of the NC diameter between 6.8 and 13.6 nm. The photoluminescence quantum yield of the NCs remains above 80% for all sizes even after thorough antisolvent purification. The use of hydrogen-bonding OPA ligands enhances quantum confinement effects, characterized by strong, well-resolved absorption peaks. Solution and solid-state nuclear magnetic resonance spectra confirmed the effective removal of unbound ligands during purification and the presence of a hydrogen-bonded network of OPA ligands on the surface of the purified NCs. Overall, this approach has the potential to facilitate a broad range of future endeavors from studies of hot carrier dynamics to both optically and electrically driven device applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c04569</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-04, Vol.33 (7), p.2387-2397</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3712-8177 ; 0000-0001-5234-0822 ; 0000-0002-0555-506X ; 0000-0002-9895-2426 ; 0000-0003-4049-2719 ; 0000-0002-0714-3851 ; 0000-0001-9856-3044 ; 0000-0002-9035-8465 ; 0000-0002-2764-5613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Brown, Alasdair A. M</creatorcontrib><creatorcontrib>Vashishtha, Parth</creatorcontrib><creatorcontrib>Hooper, Thomas J. N</creatorcontrib><creatorcontrib>Ng, Yan Fong</creatorcontrib><creatorcontrib>Nutan, Gautam V</creatorcontrib><creatorcontrib>Fang, Yanan</creatorcontrib><creatorcontrib>Giovanni, David</creatorcontrib><creatorcontrib>Tey, Ju Nie</creatorcontrib><creatorcontrib>Jiang, Liudi</creatorcontrib><creatorcontrib>Damodaran, Bahulayan</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><creatorcontrib>Pu, Suan Hui</creatorcontrib><creatorcontrib>Mhaisalkar, Subodh G</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><title>Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Room-temperature perovskite nanocrystal syntheses have previously lacked the size tunability attainable through high-temperature methods. Herein, we outline a scalable approach whereby the nucleation and growth of CsPbBr3 nanocrystals (NCs) can be decoupled and controlled at room temperature by utilizing different ligands. We employed octylphosphonic acid (OPA) ligands to regulate the critical radius and the NC growth rate. The subsequent addition of a bulkier didodecyldimethylammonium bromide ligand quenches the NC growth, defining the reaction duration. Management of these three variables enables precise tuning of the NC diameter between 6.8 and 13.6 nm. The photoluminescence quantum yield of the NCs remains above 80% for all sizes even after thorough antisolvent purification. The use of hydrogen-bonding OPA ligands enhances quantum confinement effects, characterized by strong, well-resolved absorption peaks. Solution and solid-state nuclear magnetic resonance spectra confirmed the effective removal of unbound ligands during purification and the presence of a hydrogen-bonded network of OPA ligands on the surface of the purified NCs. Overall, this approach has the potential to facilitate a broad range of future endeavors from studies of hot carrier dynamics to both optically and electrically driven device applications.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kN1Kw0AUhBdRsFYfQdgXSD27m5-tdxq0FooWW6_DyebEpDZZ2d0q9elNsXg1MDAzzMfYtYCJAClu0PiJaajrMJCbgIE4SacnbCQSCVECIE_ZCPQ0i-IsSc_ZhfcbADFE9YiFpSPTeuK57YOzW25rnvtlee8UX5KzX_6jDcSfsbfG7X3ALZ85-x0ajoG_WtvxNXWf5DDsHN3yVftDfL3rsWy3bdhz7Cu-2vehodAaPu99-94Ef8nOatx6ujrqmL09Pqzzp2jxMpvnd4sIZRyHKFWJBogVUgyp1JhqrWpU0iQZppWcSlJASMPDikBltUgyLSvKQJalMhrVmIm_3oFQsbE71w9rhYDigK04mP_YiiM29QsvOmX-</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Brown, Alasdair A. M</creator><creator>Vashishtha, Parth</creator><creator>Hooper, Thomas J. N</creator><creator>Ng, Yan Fong</creator><creator>Nutan, Gautam V</creator><creator>Fang, Yanan</creator><creator>Giovanni, David</creator><creator>Tey, Ju Nie</creator><creator>Jiang, Liudi</creator><creator>Damodaran, Bahulayan</creator><creator>Sum, Tze Chien</creator><creator>Pu, Suan Hui</creator><creator>Mhaisalkar, Subodh G</creator><creator>Mathews, Nripan</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-3712-8177</orcidid><orcidid>https://orcid.org/0000-0001-5234-0822</orcidid><orcidid>https://orcid.org/0000-0002-0555-506X</orcidid><orcidid>https://orcid.org/0000-0002-9895-2426</orcidid><orcidid>https://orcid.org/0000-0003-4049-2719</orcidid><orcidid>https://orcid.org/0000-0002-0714-3851</orcidid><orcidid>https://orcid.org/0000-0001-9856-3044</orcidid><orcidid>https://orcid.org/0000-0002-9035-8465</orcidid><orcidid>https://orcid.org/0000-0002-2764-5613</orcidid></search><sort><creationdate>20210413</creationdate><title>Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights</title><author>Brown, Alasdair A. M ; Vashishtha, Parth ; Hooper, Thomas J. N ; Ng, Yan Fong ; Nutan, Gautam V ; Fang, Yanan ; Giovanni, David ; Tey, Ju Nie ; Jiang, Liudi ; Damodaran, Bahulayan ; Sum, Tze Chien ; Pu, Suan Hui ; Mhaisalkar, Subodh G ; Mathews, Nripan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-63580043ae40628a6883fa32c57a6d292e30eae500de037f15782de702bb3c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Alasdair A. M</creatorcontrib><creatorcontrib>Vashishtha, Parth</creatorcontrib><creatorcontrib>Hooper, Thomas J. N</creatorcontrib><creatorcontrib>Ng, Yan Fong</creatorcontrib><creatorcontrib>Nutan, Gautam V</creatorcontrib><creatorcontrib>Fang, Yanan</creatorcontrib><creatorcontrib>Giovanni, David</creatorcontrib><creatorcontrib>Tey, Ju Nie</creatorcontrib><creatorcontrib>Jiang, Liudi</creatorcontrib><creatorcontrib>Damodaran, Bahulayan</creatorcontrib><creatorcontrib>Sum, Tze Chien</creatorcontrib><creatorcontrib>Pu, Suan Hui</creatorcontrib><creatorcontrib>Mhaisalkar, Subodh G</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Alasdair A. M</au><au>Vashishtha, Parth</au><au>Hooper, Thomas J. N</au><au>Ng, Yan Fong</au><au>Nutan, Gautam V</au><au>Fang, Yanan</au><au>Giovanni, David</au><au>Tey, Ju Nie</au><au>Jiang, Liudi</au><au>Damodaran, Bahulayan</au><au>Sum, Tze Chien</au><au>Pu, Suan Hui</au><au>Mhaisalkar, Subodh G</au><au>Mathews, Nripan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-04-13</date><risdate>2021</risdate><volume>33</volume><issue>7</issue><spage>2387</spage><epage>2397</epage><pages>2387-2397</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Room-temperature perovskite nanocrystal syntheses have previously lacked the size tunability attainable through high-temperature methods. Herein, we outline a scalable approach whereby the nucleation and growth of CsPbBr3 nanocrystals (NCs) can be decoupled and controlled at room temperature by utilizing different ligands. We employed octylphosphonic acid (OPA) ligands to regulate the critical radius and the NC growth rate. The subsequent addition of a bulkier didodecyldimethylammonium bromide ligand quenches the NC growth, defining the reaction duration. Management of these three variables enables precise tuning of the NC diameter between 6.8 and 13.6 nm. The photoluminescence quantum yield of the NCs remains above 80% for all sizes even after thorough antisolvent purification. The use of hydrogen-bonding OPA ligands enhances quantum confinement effects, characterized by strong, well-resolved absorption peaks. Solution and solid-state nuclear magnetic resonance spectra confirmed the effective removal of unbound ligands during purification and the presence of a hydrogen-bonded network of OPA ligands on the surface of the purified NCs. Overall, this approach has the potential to facilitate a broad range of future endeavors from studies of hot carrier dynamics to both optically and electrically driven device applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c04569</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3712-8177</orcidid><orcidid>https://orcid.org/0000-0001-5234-0822</orcidid><orcidid>https://orcid.org/0000-0002-0555-506X</orcidid><orcidid>https://orcid.org/0000-0002-9895-2426</orcidid><orcidid>https://orcid.org/0000-0003-4049-2719</orcidid><orcidid>https://orcid.org/0000-0002-0714-3851</orcidid><orcidid>https://orcid.org/0000-0001-9856-3044</orcidid><orcidid>https://orcid.org/0000-0002-9035-8465</orcidid><orcidid>https://orcid.org/0000-0002-2764-5613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-04, Vol.33 (7), p.2387-2397
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_0c04569
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Control%20of%20CsPbBr3%20Perovskite%20Nanocrystal%20Growth%20at%20Room%20Temperature:%20Size%20Tunability%20and%20Synthetic%20Insights&rft.jtitle=Chemistry%20of%20materials&rft.au=Brown,%20Alasdair%20A.%20M&rft.date=2021-04-13&rft.volume=33&rft.issue=7&rft.spage=2387&rft.epage=2397&rft.pages=2387-2397&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c04569&rft_dat=%3Cacs%3Eb617401866%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a244t-63580043ae40628a6883fa32c57a6d292e30eae500de037f15782de702bb3c8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true