Loading…

Guanidine-Functionalized PIM‑1 as a High-Capacity Polymeric Sorbent for CO2 Capture

Polymers of intrinsic microporosity (PIMs) are attractive materials for gas adsorption due to their high surface area and interconnected microporosity. However, the low CO2 affinity of PIM-1 results in only a small amount of physisorbed CO2, making the addition of higher affinity species, such as ba...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2024-05, Vol.36 (9), p.4393-4402
Main Authors: Roy, Ankana, Holmes, Hannah E., Baugh, Lisa Saunders, Calabro, David C., Leisen, Johannes, Seth, Saona, Ren, Yi, Weston, Simon C., Lively, Ryan P., Finn, M.G.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4402
container_issue 9
container_start_page 4393
container_title Chemistry of materials
container_volume 36
creator Roy, Ankana
Holmes, Hannah E.
Baugh, Lisa Saunders
Calabro, David C.
Leisen, Johannes
Seth, Saona
Ren, Yi
Weston, Simon C.
Lively, Ryan P.
Finn, M.G.
description Polymers of intrinsic microporosity (PIMs) are attractive materials for gas adsorption due to their high surface area and interconnected microporosity. However, the low CO2 affinity of PIM-1 results in only a small amount of physisorbed CO2, making the addition of higher affinity species, such as basic amines, a requirement for use in dilute CO2 applications. This has been previously accomplished by trapping added amines in the polymer pores, with deleterious consequences for gas transport, regeneration energy, and amine loss. To address these disadvantages, we have explored functionalization of the PIM-1 backbone, comparing simple primary amine to guanidine groups. While both performed similarly at high partial pressures of CO2, the addition of guanidine groups to the PIM-1 polymer provided enhanced CO2 affinity relative to the parent and amine-functionalized materials at low CO2 concentrations. Evaluated by breakthrough and gravimetric methods, PIM-guanidine achieved a CO2 uptake of 1.3 mmol/g (dry) and 2.0 mmol/g (humid) from a 40 mbar CO2 feed, among the highest values reported for all-polymer sorbents in humid natural gas combined cycle (NGCC) flue gas conditions. Detailed 13CO2 adsorption experiments coupled with quantitative NMR spectroscopy showed that guanidine and water combine to produce carbonate/bicarbonate species. PIM-guanidine was shown to undergo slow temperature-dependent degradation over multiple humid CO2 cycles (40 mbar and 1 bar) when regenerated at higher temperatures (150 °C). Excellent performance and stability could be achieved by cycling at lower temperatures (40–70 and 30–90 °C), establishing PIM-guanidine as a promising candidate for scale-up in all-polymer contactors for NGCC CO2 capture.
doi_str_mv 10.1021/acs.chemmater.3c03311
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_3c03311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b347396976</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-e4fae92267001c6baf2f18f3e0cdc15e6867d8265502ba5bbf2ee0383ac0bf073</originalsourceid><addsrcrecordid>eNo9kNtKw0AYhBdRMFYfQdgX2PrvbjZJLyXYA1Ra0F6HP5t_7ZYcJIeLeuUr-Ip9ElMsXg0MM8PwMfYoYSpBySe03dTuqaqwp3aqLWgt5RULpFEgDIC6ZgEks1iEsYlu2V3XHQDkWE0CtlsMWPvC1yTmQ21739RY-i8q-Hb1evr-kRw7jnzpP_YixU-0vj_ybVMeK2q95W9Nm1Pdc9e0PN0oPkb6oaV7duOw7OjhohO2m7-8p0ux3ixW6fNaoArDXlDokGZKRfH4x0Y5OuVk4jSBLaw0FCVRXCQqMgZUjibPnSICnWi0kDuI9YTJv90RQXZohnY832USsjOX7Gz-c8kuXPQvCmlbGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Guanidine-Functionalized PIM‑1 as a High-Capacity Polymeric Sorbent for CO2 Capture</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Roy, Ankana ; Holmes, Hannah E. ; Baugh, Lisa Saunders ; Calabro, David C. ; Leisen, Johannes ; Seth, Saona ; Ren, Yi ; Weston, Simon C. ; Lively, Ryan P. ; Finn, M.G.</creator><creatorcontrib>Roy, Ankana ; Holmes, Hannah E. ; Baugh, Lisa Saunders ; Calabro, David C. ; Leisen, Johannes ; Seth, Saona ; Ren, Yi ; Weston, Simon C. ; Lively, Ryan P. ; Finn, M.G.</creatorcontrib><description>Polymers of intrinsic microporosity (PIMs) are attractive materials for gas adsorption due to their high surface area and interconnected microporosity. However, the low CO2 affinity of PIM-1 results in only a small amount of physisorbed CO2, making the addition of higher affinity species, such as basic amines, a requirement for use in dilute CO2 applications. This has been previously accomplished by trapping added amines in the polymer pores, with deleterious consequences for gas transport, regeneration energy, and amine loss. To address these disadvantages, we have explored functionalization of the PIM-1 backbone, comparing simple primary amine to guanidine groups. While both performed similarly at high partial pressures of CO2, the addition of guanidine groups to the PIM-1 polymer provided enhanced CO2 affinity relative to the parent and amine-functionalized materials at low CO2 concentrations. Evaluated by breakthrough and gravimetric methods, PIM-guanidine achieved a CO2 uptake of 1.3 mmol/g (dry) and 2.0 mmol/g (humid) from a 40 mbar CO2 feed, among the highest values reported for all-polymer sorbents in humid natural gas combined cycle (NGCC) flue gas conditions. Detailed 13CO2 adsorption experiments coupled with quantitative NMR spectroscopy showed that guanidine and water combine to produce carbonate/bicarbonate species. PIM-guanidine was shown to undergo slow temperature-dependent degradation over multiple humid CO2 cycles (40 mbar and 1 bar) when regenerated at higher temperatures (150 °C). Excellent performance and stability could be achieved by cycling at lower temperatures (40–70 and 30–90 °C), establishing PIM-guanidine as a promising candidate for scale-up in all-polymer contactors for NGCC CO2 capture.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c03311</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2024-05, Vol.36 (9), p.4393-4402</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1135-2082 ; 0000-0003-0155-6716 ; 0000-0003-2077-0240 ; 0000-0002-3199-1711 ; 0000-0002-8039-4008 ; 0000-0001-8247-3108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roy, Ankana</creatorcontrib><creatorcontrib>Holmes, Hannah E.</creatorcontrib><creatorcontrib>Baugh, Lisa Saunders</creatorcontrib><creatorcontrib>Calabro, David C.</creatorcontrib><creatorcontrib>Leisen, Johannes</creatorcontrib><creatorcontrib>Seth, Saona</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Weston, Simon C.</creatorcontrib><creatorcontrib>Lively, Ryan P.</creatorcontrib><creatorcontrib>Finn, M.G.</creatorcontrib><title>Guanidine-Functionalized PIM‑1 as a High-Capacity Polymeric Sorbent for CO2 Capture</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Polymers of intrinsic microporosity (PIMs) are attractive materials for gas adsorption due to their high surface area and interconnected microporosity. However, the low CO2 affinity of PIM-1 results in only a small amount of physisorbed CO2, making the addition of higher affinity species, such as basic amines, a requirement for use in dilute CO2 applications. This has been previously accomplished by trapping added amines in the polymer pores, with deleterious consequences for gas transport, regeneration energy, and amine loss. To address these disadvantages, we have explored functionalization of the PIM-1 backbone, comparing simple primary amine to guanidine groups. While both performed similarly at high partial pressures of CO2, the addition of guanidine groups to the PIM-1 polymer provided enhanced CO2 affinity relative to the parent and amine-functionalized materials at low CO2 concentrations. Evaluated by breakthrough and gravimetric methods, PIM-guanidine achieved a CO2 uptake of 1.3 mmol/g (dry) and 2.0 mmol/g (humid) from a 40 mbar CO2 feed, among the highest values reported for all-polymer sorbents in humid natural gas combined cycle (NGCC) flue gas conditions. Detailed 13CO2 adsorption experiments coupled with quantitative NMR spectroscopy showed that guanidine and water combine to produce carbonate/bicarbonate species. PIM-guanidine was shown to undergo slow temperature-dependent degradation over multiple humid CO2 cycles (40 mbar and 1 bar) when regenerated at higher temperatures (150 °C). Excellent performance and stability could be achieved by cycling at lower temperatures (40–70 and 30–90 °C), establishing PIM-guanidine as a promising candidate for scale-up in all-polymer contactors for NGCC CO2 capture.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kNtKw0AYhBdRMFYfQdgX2PrvbjZJLyXYA1Ra0F6HP5t_7ZYcJIeLeuUr-Ip9ElMsXg0MM8PwMfYoYSpBySe03dTuqaqwp3aqLWgt5RULpFEgDIC6ZgEks1iEsYlu2V3XHQDkWE0CtlsMWPvC1yTmQ21739RY-i8q-Hb1evr-kRw7jnzpP_YixU-0vj_ybVMeK2q95W9Nm1Pdc9e0PN0oPkb6oaV7duOw7OjhohO2m7-8p0ux3ixW6fNaoArDXlDokGZKRfH4x0Y5OuVk4jSBLaw0FCVRXCQqMgZUjibPnSICnWi0kDuI9YTJv90RQXZohnY832USsjOX7Gz-c8kuXPQvCmlbGA</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Roy, Ankana</creator><creator>Holmes, Hannah E.</creator><creator>Baugh, Lisa Saunders</creator><creator>Calabro, David C.</creator><creator>Leisen, Johannes</creator><creator>Seth, Saona</creator><creator>Ren, Yi</creator><creator>Weston, Simon C.</creator><creator>Lively, Ryan P.</creator><creator>Finn, M.G.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-1135-2082</orcidid><orcidid>https://orcid.org/0000-0003-0155-6716</orcidid><orcidid>https://orcid.org/0000-0003-2077-0240</orcidid><orcidid>https://orcid.org/0000-0002-3199-1711</orcidid><orcidid>https://orcid.org/0000-0002-8039-4008</orcidid><orcidid>https://orcid.org/0000-0001-8247-3108</orcidid></search><sort><creationdate>20240514</creationdate><title>Guanidine-Functionalized PIM‑1 as a High-Capacity Polymeric Sorbent for CO2 Capture</title><author>Roy, Ankana ; Holmes, Hannah E. ; Baugh, Lisa Saunders ; Calabro, David C. ; Leisen, Johannes ; Seth, Saona ; Ren, Yi ; Weston, Simon C. ; Lively, Ryan P. ; Finn, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-e4fae92267001c6baf2f18f3e0cdc15e6867d8265502ba5bbf2ee0383ac0bf073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Ankana</creatorcontrib><creatorcontrib>Holmes, Hannah E.</creatorcontrib><creatorcontrib>Baugh, Lisa Saunders</creatorcontrib><creatorcontrib>Calabro, David C.</creatorcontrib><creatorcontrib>Leisen, Johannes</creatorcontrib><creatorcontrib>Seth, Saona</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Weston, Simon C.</creatorcontrib><creatorcontrib>Lively, Ryan P.</creatorcontrib><creatorcontrib>Finn, M.G.</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Ankana</au><au>Holmes, Hannah E.</au><au>Baugh, Lisa Saunders</au><au>Calabro, David C.</au><au>Leisen, Johannes</au><au>Seth, Saona</au><au>Ren, Yi</au><au>Weston, Simon C.</au><au>Lively, Ryan P.</au><au>Finn, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guanidine-Functionalized PIM‑1 as a High-Capacity Polymeric Sorbent for CO2 Capture</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>36</volume><issue>9</issue><spage>4393</spage><epage>4402</epage><pages>4393-4402</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Polymers of intrinsic microporosity (PIMs) are attractive materials for gas adsorption due to their high surface area and interconnected microporosity. However, the low CO2 affinity of PIM-1 results in only a small amount of physisorbed CO2, making the addition of higher affinity species, such as basic amines, a requirement for use in dilute CO2 applications. This has been previously accomplished by trapping added amines in the polymer pores, with deleterious consequences for gas transport, regeneration energy, and amine loss. To address these disadvantages, we have explored functionalization of the PIM-1 backbone, comparing simple primary amine to guanidine groups. While both performed similarly at high partial pressures of CO2, the addition of guanidine groups to the PIM-1 polymer provided enhanced CO2 affinity relative to the parent and amine-functionalized materials at low CO2 concentrations. Evaluated by breakthrough and gravimetric methods, PIM-guanidine achieved a CO2 uptake of 1.3 mmol/g (dry) and 2.0 mmol/g (humid) from a 40 mbar CO2 feed, among the highest values reported for all-polymer sorbents in humid natural gas combined cycle (NGCC) flue gas conditions. Detailed 13CO2 adsorption experiments coupled with quantitative NMR spectroscopy showed that guanidine and water combine to produce carbonate/bicarbonate species. PIM-guanidine was shown to undergo slow temperature-dependent degradation over multiple humid CO2 cycles (40 mbar and 1 bar) when regenerated at higher temperatures (150 °C). Excellent performance and stability could be achieved by cycling at lower temperatures (40–70 and 30–90 °C), establishing PIM-guanidine as a promising candidate for scale-up in all-polymer contactors for NGCC CO2 capture.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.3c03311</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1135-2082</orcidid><orcidid>https://orcid.org/0000-0003-0155-6716</orcidid><orcidid>https://orcid.org/0000-0003-2077-0240</orcidid><orcidid>https://orcid.org/0000-0002-3199-1711</orcidid><orcidid>https://orcid.org/0000-0002-8039-4008</orcidid><orcidid>https://orcid.org/0000-0001-8247-3108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-05, Vol.36 (9), p.4393-4402
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_3c03311
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Guanidine-Functionalized PIM‑1 as a High-Capacity Polymeric Sorbent for CO2 Capture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guanidine-Functionalized%20PIM%E2%80%911%20as%20a%20High-Capacity%20Polymeric%20Sorbent%20for%20CO2%20Capture&rft.jtitle=Chemistry%20of%20materials&rft.au=Roy,%20Ankana&rft.date=2024-05-14&rft.volume=36&rft.issue=9&rft.spage=4393&rft.epage=4402&rft.pages=4393-4402&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c03311&rft_dat=%3Cacs%3Eb347396976%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a244t-e4fae92267001c6baf2f18f3e0cdc15e6867d8265502ba5bbf2ee0383ac0bf073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true