Loading…

Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries

Amorphous TiO2@C nanospheres were synthesized via a template approach. After being sintered under different conditions, two types of polyphase TiO2 hollow nanospheres were obtained. The electrochemical properties of the amorphous TiO2 nanospheres and the TiO2 hollow nanospheres with different phases...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2015-09, Vol.27 (17), p.6022-6029
Main Authors: Su, Dawei, Dou, Shixue, Wang, Guoxiu
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6029
container_issue 17
container_start_page 6022
container_title Chemistry of materials
container_volume 27
creator Su, Dawei
Dou, Shixue
Wang, Guoxiu
description Amorphous TiO2@C nanospheres were synthesized via a template approach. After being sintered under different conditions, two types of polyphase TiO2 hollow nanospheres were obtained. The electrochemical properties of the amorphous TiO2 nanospheres and the TiO2 hollow nanospheres with different phases were characterized as anodes for the Na-ion batteries. It was found that all the samples demonstrated excellent cyclability, which was sustainable for hundreds of cycles with little capacity fading, although the anatase TiO2 presented a capability that was better than that of the mixed anatase/rutile TiO2 or the amorphous TiO2@C. Through crystallographic analysis, it was revealed that the anatase TiO2 crystal structure supplies two-dimensional diffusion paths for Na-ion intercalation and more accommodation sites. Density functional theory calculations indicated lower energy barriers for the insertion of Na+ into anatase TiO2. Therefore, anatase TiO2 hollow nanospheres show excellent high-rate performance. Through ex situ field emission scanning electron microscopy, it was revealed that the TiO2 hollow nanosphere architecture can be maintained for hundreds of cycles, which is the main reason for its superior cyclability.
doi_str_mv 10.1021/acs.chemmater.5b02348
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_5b02348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c693625789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-8bfa652df173e6018da5e62b8627f210067881111328c307cc4f49c8adafd1183</originalsourceid><addsrcrecordid>eNo9kNtKw0AQQBdRsFY_QZgfSJ3ZTTZb39LipVCtSHwOk2SXpLRZyab_b6LFeRkYOGfgCHFPuCCU9MBVWFSNPR55sP0iKVGq2FyIGSUSowRRXooZmmUaxWmir8VNCHtEGlEzE5x1PHCwkLc7-QgrO4wOyDpfW3ibfC0fIG-4g-zo--_GnwJwV8PnaWgPFj6akQ3g3S8PzvfwztHGd7DiydTacCuuHB-CvTvvufh6fsrXr9F297JZZ9uIpVZDZErHOpG1o1RZjWRqTqyWpdEydZIQdWoMjaOkqRSmVRW7eFkZrtnVREbNBf15xxzF3p_6bvxWEBZTo2I6_jcqzo3UDywkXME</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Su, Dawei ; Dou, Shixue ; Wang, Guoxiu</creator><creatorcontrib>Su, Dawei ; Dou, Shixue ; Wang, Guoxiu</creatorcontrib><description>Amorphous TiO2@C nanospheres were synthesized via a template approach. After being sintered under different conditions, two types of polyphase TiO2 hollow nanospheres were obtained. The electrochemical properties of the amorphous TiO2 nanospheres and the TiO2 hollow nanospheres with different phases were characterized as anodes for the Na-ion batteries. It was found that all the samples demonstrated excellent cyclability, which was sustainable for hundreds of cycles with little capacity fading, although the anatase TiO2 presented a capability that was better than that of the mixed anatase/rutile TiO2 or the amorphous TiO2@C. Through crystallographic analysis, it was revealed that the anatase TiO2 crystal structure supplies two-dimensional diffusion paths for Na-ion intercalation and more accommodation sites. Density functional theory calculations indicated lower energy barriers for the insertion of Na+ into anatase TiO2. Therefore, anatase TiO2 hollow nanospheres show excellent high-rate performance. Through ex situ field emission scanning electron microscopy, it was revealed that the TiO2 hollow nanosphere architecture can be maintained for hundreds of cycles, which is the main reason for its superior cyclability.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.5b02348</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2015-09, Vol.27 (17), p.6022-6029</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Dawei</creatorcontrib><creatorcontrib>Dou, Shixue</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><title>Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Amorphous TiO2@C nanospheres were synthesized via a template approach. After being sintered under different conditions, two types of polyphase TiO2 hollow nanospheres were obtained. The electrochemical properties of the amorphous TiO2 nanospheres and the TiO2 hollow nanospheres with different phases were characterized as anodes for the Na-ion batteries. It was found that all the samples demonstrated excellent cyclability, which was sustainable for hundreds of cycles with little capacity fading, although the anatase TiO2 presented a capability that was better than that of the mixed anatase/rutile TiO2 or the amorphous TiO2@C. Through crystallographic analysis, it was revealed that the anatase TiO2 crystal structure supplies two-dimensional diffusion paths for Na-ion intercalation and more accommodation sites. Density functional theory calculations indicated lower energy barriers for the insertion of Na+ into anatase TiO2. Therefore, anatase TiO2 hollow nanospheres show excellent high-rate performance. Through ex situ field emission scanning electron microscopy, it was revealed that the TiO2 hollow nanosphere architecture can be maintained for hundreds of cycles, which is the main reason for its superior cyclability.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kNtKw0AQQBdRsFY_QZgfSJ3ZTTZb39LipVCtSHwOk2SXpLRZyab_b6LFeRkYOGfgCHFPuCCU9MBVWFSNPR55sP0iKVGq2FyIGSUSowRRXooZmmUaxWmir8VNCHtEGlEzE5x1PHCwkLc7-QgrO4wOyDpfW3ibfC0fIG-4g-zo--_GnwJwV8PnaWgPFj6akQ3g3S8PzvfwztHGd7DiydTacCuuHB-CvTvvufh6fsrXr9F297JZZ9uIpVZDZErHOpG1o1RZjWRqTqyWpdEydZIQdWoMjaOkqRSmVRW7eFkZrtnVREbNBf15xxzF3p_6bvxWEBZTo2I6_jcqzo3UDywkXME</recordid><startdate>20150908</startdate><enddate>20150908</enddate><creator>Su, Dawei</creator><creator>Dou, Shixue</creator><creator>Wang, Guoxiu</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20150908</creationdate><title>Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries</title><author>Su, Dawei ; Dou, Shixue ; Wang, Guoxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-8bfa652df173e6018da5e62b8627f210067881111328c307cc4f49c8adafd1183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Dawei</creatorcontrib><creatorcontrib>Dou, Shixue</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Dawei</au><au>Dou, Shixue</au><au>Wang, Guoxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2015-09-08</date><risdate>2015</risdate><volume>27</volume><issue>17</issue><spage>6022</spage><epage>6029</epage><pages>6022-6029</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Amorphous TiO2@C nanospheres were synthesized via a template approach. After being sintered under different conditions, two types of polyphase TiO2 hollow nanospheres were obtained. The electrochemical properties of the amorphous TiO2 nanospheres and the TiO2 hollow nanospheres with different phases were characterized as anodes for the Na-ion batteries. It was found that all the samples demonstrated excellent cyclability, which was sustainable for hundreds of cycles with little capacity fading, although the anatase TiO2 presented a capability that was better than that of the mixed anatase/rutile TiO2 or the amorphous TiO2@C. Through crystallographic analysis, it was revealed that the anatase TiO2 crystal structure supplies two-dimensional diffusion paths for Na-ion intercalation and more accommodation sites. Density functional theory calculations indicated lower energy barriers for the insertion of Na+ into anatase TiO2. Therefore, anatase TiO2 hollow nanospheres show excellent high-rate performance. Through ex situ field emission scanning electron microscopy, it was revealed that the TiO2 hollow nanosphere architecture can be maintained for hundreds of cycles, which is the main reason for its superior cyclability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.5b02348</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2015-09, Vol.27 (17), p.6022-6029
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_5b02348
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatase%20TiO2:%20Better%20Anode%20Material%20Than%20Amorphous%20and%20Rutile%20Phases%20of%20TiO2%20for%20Na-Ion%20Batteries&rft.jtitle=Chemistry%20of%20materials&rft.au=Su,%20Dawei&rft.date=2015-09-08&rft.volume=27&rft.issue=17&rft.spage=6022&rft.epage=6029&rft.pages=6022-6029&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.5b02348&rft_dat=%3Cacs%3Ec693625789%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a263t-8bfa652df173e6018da5e62b8627f210067881111328c307cc4f49c8adafd1183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true