Loading…

Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte

Solid state electrolytes could address the current safety concerns of lithium-ion batteries as well as provide higher electrochemical stability and energy density. Among solid electrolyte contenders, garnet-structured Li7La3Zr2O12 appears as a particularly promising material owing to its wide electr...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2017-02, Vol.29 (4), p.1769-1778
Main Authors: Buannic, Lucienne, Orayech, Brahim, López Del Amo, Juan-Miguel, Carrasco, Javier, Katcho, Nebil A, Aguesse, Frédéric, Manalastas, William, Zhang, Wei, Kilner, John, Llordés, Anna
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1778
container_issue 4
container_start_page 1769
container_title Chemistry of materials
container_volume 29
creator Buannic, Lucienne
Orayech, Brahim
López Del Amo, Juan-Miguel
Carrasco, Javier
Katcho, Nebil A
Aguesse, Frédéric
Manalastas, William
Zhang, Wei
Kilner, John
Llordés, Anna
description Solid state electrolytes could address the current safety concerns of lithium-ion batteries as well as provide higher electrochemical stability and energy density. Among solid electrolyte contenders, garnet-structured Li7La3Zr2O12 appears as a particularly promising material owing to its wide electrochemical stability window; however, its ionic conductivity remains an order of magnitude below that of ubiquitous liquid electrolytes. Here, we present an innovative dual substitution strategy developed to enhance Li-ion mobility in garnet-structured solid electrolytes. A first dopant cation, Ga3+, is introduced on the Li sites to stabilize the fast-conducting cubic phase. Simultaneously, a second cation, Sc3+, is used to partially populate the Zr sites, which consequently increases the concentration of Li ions by charge compensation. This aliovalent dual substitution strategy allows fine-tuning of the number of charge carriers in the cubic Li7La3Zr2O12 according to the resulting stoichiometry, Li7–3x+yGa x La3Zr2–y Sc y O12. The coexistence of Ga and Sc cations in the garnet structure is confirmed by a set of simulation and experimental techniques: DFT calculations, XRD, ICP, SEM, STEM, EDS, solid state NMR, and EIS. This thorough characterization highlights a particular cationic distribution in Li6.65Ga0.15La3Zr1.90Sc0.10O12, with preferential Ga3+ occupation of tetrahedral Li24d sites over the distorted octahedral Li96h sites. 7Li NMR reveals a heterogeneous distribution of Li charge carriers with distinct mobilities. This unique Li local structure has a beneficial effect on the transport properties of the garnet, enhancing the ionic conductivity and lowering the activation energy, with values of 1.8 × 10–3 S cm–1 at 300 K and 0.29 eV in the temperature range of 180 to 340 K, respectively.
doi_str_mv 10.1021/acs.chemmater.6b05369
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_6b05369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a577465995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-6f6f96364e4034d217e0bfd2a390aebf76fa91b7b83cf8d44084e4392f81ee523</originalsourceid><addsrcrecordid>eNo9kMFKxDAQhoMoWFcfQchdWidJm7ZHqVUXCnuoXjxYkjRxs3QTaFOhb28XF08DM___DXwI3RNICFDyKNSUqL0-HkXQY8IlZIyXFygiGYU4A6CXKIKizOM0z_g1upmmAwBZq0WEvp5nMeB2llOwYQ7WO9yGcQV9Lzh4XLu9cErjxj7grXdW4cq7flbB_tiwYOvWS94I9jnSHaG49YPtcT1oFUY_LEHfoisjhknfnecGfbzU79Vb3Oxet9VTEwtGIMTccFNyxlOdAkt7SnIN0vRUsBKElibnRpRE5rJgyhR9mkKxRllJTUG0zijbIPLHXV10Bz-Pbv3WEehOgrrT8l9QdxbEfgEBQF1D</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Buannic, Lucienne ; Orayech, Brahim ; López Del Amo, Juan-Miguel ; Carrasco, Javier ; Katcho, Nebil A ; Aguesse, Frédéric ; Manalastas, William ; Zhang, Wei ; Kilner, John ; Llordés, Anna</creator><creatorcontrib>Buannic, Lucienne ; Orayech, Brahim ; López Del Amo, Juan-Miguel ; Carrasco, Javier ; Katcho, Nebil A ; Aguesse, Frédéric ; Manalastas, William ; Zhang, Wei ; Kilner, John ; Llordés, Anna</creatorcontrib><description>Solid state electrolytes could address the current safety concerns of lithium-ion batteries as well as provide higher electrochemical stability and energy density. Among solid electrolyte contenders, garnet-structured Li7La3Zr2O12 appears as a particularly promising material owing to its wide electrochemical stability window; however, its ionic conductivity remains an order of magnitude below that of ubiquitous liquid electrolytes. Here, we present an innovative dual substitution strategy developed to enhance Li-ion mobility in garnet-structured solid electrolytes. A first dopant cation, Ga3+, is introduced on the Li sites to stabilize the fast-conducting cubic phase. Simultaneously, a second cation, Sc3+, is used to partially populate the Zr sites, which consequently increases the concentration of Li ions by charge compensation. This aliovalent dual substitution strategy allows fine-tuning of the number of charge carriers in the cubic Li7La3Zr2O12 according to the resulting stoichiometry, Li7–3x+yGa x La3Zr2–y Sc y O12. The coexistence of Ga and Sc cations in the garnet structure is confirmed by a set of simulation and experimental techniques: DFT calculations, XRD, ICP, SEM, STEM, EDS, solid state NMR, and EIS. This thorough characterization highlights a particular cationic distribution in Li6.65Ga0.15La3Zr1.90Sc0.10O12, with preferential Ga3+ occupation of tetrahedral Li24d sites over the distorted octahedral Li96h sites. 7Li NMR reveals a heterogeneous distribution of Li charge carriers with distinct mobilities. This unique Li local structure has a beneficial effect on the transport properties of the garnet, enhancing the ionic conductivity and lowering the activation energy, with values of 1.8 × 10–3 S cm–1 at 300 K and 0.29 eV in the temperature range of 180 to 340 K, respectively.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.6b05369</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2017-02, Vol.29 (4), p.1769-1778</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3117-6933 ; 0000-0003-3055-4058 ; 0000-0003-4169-9156 ; 0000-0002-5675-0711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Buannic, Lucienne</creatorcontrib><creatorcontrib>Orayech, Brahim</creatorcontrib><creatorcontrib>López Del Amo, Juan-Miguel</creatorcontrib><creatorcontrib>Carrasco, Javier</creatorcontrib><creatorcontrib>Katcho, Nebil A</creatorcontrib><creatorcontrib>Aguesse, Frédéric</creatorcontrib><creatorcontrib>Manalastas, William</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Kilner, John</creatorcontrib><creatorcontrib>Llordés, Anna</creatorcontrib><title>Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Solid state electrolytes could address the current safety concerns of lithium-ion batteries as well as provide higher electrochemical stability and energy density. Among solid electrolyte contenders, garnet-structured Li7La3Zr2O12 appears as a particularly promising material owing to its wide electrochemical stability window; however, its ionic conductivity remains an order of magnitude below that of ubiquitous liquid electrolytes. Here, we present an innovative dual substitution strategy developed to enhance Li-ion mobility in garnet-structured solid electrolytes. A first dopant cation, Ga3+, is introduced on the Li sites to stabilize the fast-conducting cubic phase. Simultaneously, a second cation, Sc3+, is used to partially populate the Zr sites, which consequently increases the concentration of Li ions by charge compensation. This aliovalent dual substitution strategy allows fine-tuning of the number of charge carriers in the cubic Li7La3Zr2O12 according to the resulting stoichiometry, Li7–3x+yGa x La3Zr2–y Sc y O12. The coexistence of Ga and Sc cations in the garnet structure is confirmed by a set of simulation and experimental techniques: DFT calculations, XRD, ICP, SEM, STEM, EDS, solid state NMR, and EIS. This thorough characterization highlights a particular cationic distribution in Li6.65Ga0.15La3Zr1.90Sc0.10O12, with preferential Ga3+ occupation of tetrahedral Li24d sites over the distorted octahedral Li96h sites. 7Li NMR reveals a heterogeneous distribution of Li charge carriers with distinct mobilities. This unique Li local structure has a beneficial effect on the transport properties of the garnet, enhancing the ionic conductivity and lowering the activation energy, with values of 1.8 × 10–3 S cm–1 at 300 K and 0.29 eV in the temperature range of 180 to 340 K, respectively.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMFKxDAQhoMoWFcfQchdWidJm7ZHqVUXCnuoXjxYkjRxs3QTaFOhb28XF08DM___DXwI3RNICFDyKNSUqL0-HkXQY8IlZIyXFygiGYU4A6CXKIKizOM0z_g1upmmAwBZq0WEvp5nMeB2llOwYQ7WO9yGcQV9Lzh4XLu9cErjxj7grXdW4cq7flbB_tiwYOvWS94I9jnSHaG49YPtcT1oFUY_LEHfoisjhknfnecGfbzU79Vb3Oxet9VTEwtGIMTccFNyxlOdAkt7SnIN0vRUsBKElibnRpRE5rJgyhR9mkKxRllJTUG0zijbIPLHXV10Bz-Pbv3WEehOgrrT8l9QdxbEfgEBQF1D</recordid><startdate>20170228</startdate><enddate>20170228</enddate><creator>Buannic, Lucienne</creator><creator>Orayech, Brahim</creator><creator>López Del Amo, Juan-Miguel</creator><creator>Carrasco, Javier</creator><creator>Katcho, Nebil A</creator><creator>Aguesse, Frédéric</creator><creator>Manalastas, William</creator><creator>Zhang, Wei</creator><creator>Kilner, John</creator><creator>Llordés, Anna</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-3117-6933</orcidid><orcidid>https://orcid.org/0000-0003-3055-4058</orcidid><orcidid>https://orcid.org/0000-0003-4169-9156</orcidid><orcidid>https://orcid.org/0000-0002-5675-0711</orcidid></search><sort><creationdate>20170228</creationdate><title>Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte</title><author>Buannic, Lucienne ; Orayech, Brahim ; López Del Amo, Juan-Miguel ; Carrasco, Javier ; Katcho, Nebil A ; Aguesse, Frédéric ; Manalastas, William ; Zhang, Wei ; Kilner, John ; Llordés, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-6f6f96364e4034d217e0bfd2a390aebf76fa91b7b83cf8d44084e4392f81ee523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buannic, Lucienne</creatorcontrib><creatorcontrib>Orayech, Brahim</creatorcontrib><creatorcontrib>López Del Amo, Juan-Miguel</creatorcontrib><creatorcontrib>Carrasco, Javier</creatorcontrib><creatorcontrib>Katcho, Nebil A</creatorcontrib><creatorcontrib>Aguesse, Frédéric</creatorcontrib><creatorcontrib>Manalastas, William</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Kilner, John</creatorcontrib><creatorcontrib>Llordés, Anna</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buannic, Lucienne</au><au>Orayech, Brahim</au><au>López Del Amo, Juan-Miguel</au><au>Carrasco, Javier</au><au>Katcho, Nebil A</au><au>Aguesse, Frédéric</au><au>Manalastas, William</au><au>Zhang, Wei</au><au>Kilner, John</au><au>Llordés, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-02-28</date><risdate>2017</risdate><volume>29</volume><issue>4</issue><spage>1769</spage><epage>1778</epage><pages>1769-1778</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Solid state electrolytes could address the current safety concerns of lithium-ion batteries as well as provide higher electrochemical stability and energy density. Among solid electrolyte contenders, garnet-structured Li7La3Zr2O12 appears as a particularly promising material owing to its wide electrochemical stability window; however, its ionic conductivity remains an order of magnitude below that of ubiquitous liquid electrolytes. Here, we present an innovative dual substitution strategy developed to enhance Li-ion mobility in garnet-structured solid electrolytes. A first dopant cation, Ga3+, is introduced on the Li sites to stabilize the fast-conducting cubic phase. Simultaneously, a second cation, Sc3+, is used to partially populate the Zr sites, which consequently increases the concentration of Li ions by charge compensation. This aliovalent dual substitution strategy allows fine-tuning of the number of charge carriers in the cubic Li7La3Zr2O12 according to the resulting stoichiometry, Li7–3x+yGa x La3Zr2–y Sc y O12. The coexistence of Ga and Sc cations in the garnet structure is confirmed by a set of simulation and experimental techniques: DFT calculations, XRD, ICP, SEM, STEM, EDS, solid state NMR, and EIS. This thorough characterization highlights a particular cationic distribution in Li6.65Ga0.15La3Zr1.90Sc0.10O12, with preferential Ga3+ occupation of tetrahedral Li24d sites over the distorted octahedral Li96h sites. 7Li NMR reveals a heterogeneous distribution of Li charge carriers with distinct mobilities. This unique Li local structure has a beneficial effect on the transport properties of the garnet, enhancing the ionic conductivity and lowering the activation energy, with values of 1.8 × 10–3 S cm–1 at 300 K and 0.29 eV in the temperature range of 180 to 340 K, respectively.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.6b05369</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3117-6933</orcidid><orcidid>https://orcid.org/0000-0003-3055-4058</orcidid><orcidid>https://orcid.org/0000-0003-4169-9156</orcidid><orcidid>https://orcid.org/0000-0002-5675-0711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-02, Vol.29 (4), p.1769-1778
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_6b05369
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Substitution%20Strategy%20to%20Enhance%20Li+%20Ionic%20Conductivity%20in%20Li7La3Zr2O12%20Solid%20Electrolyte&rft.jtitle=Chemistry%20of%20materials&rft.au=Buannic,%20Lucienne&rft.date=2017-02-28&rft.volume=29&rft.issue=4&rft.spage=1769&rft.epage=1778&rft.pages=1769-1778&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.6b05369&rft_dat=%3Cacs%3Ea577465995%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a310t-6f6f96364e4034d217e0bfd2a390aebf76fa91b7b83cf8d44084e4392f81ee523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true