Loading…
Modeling Uranyl Adsorption on MoS2/Mo2CT x Heterostructures Using DFT and BOMD Methods
Uranium-bearing wastewaters exert a great threat to the ecological environment due to its high radiotoxicity level. The designing and fabrication of novel adsorption materials can be promoted for radionuclide elimination from wastewater. In this work, results from density functional theory and Born–...
Saved in:
Published in: | Inorganic chemistry 2023-06, Vol.62 (23), p.8969-8979 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Uranium-bearing wastewaters exert a great threat to the ecological environment due to its high radiotoxicity level. The designing and fabrication of novel adsorption materials can be promoted for radionuclide elimination from wastewater. In this work, results from density functional theory and Born–Oppenheimer molecular dynamics simulations are reported for the uranyl adsorption behavior on the MoS2/Mo2CT x heterostructure in the gas phase and in an aqueous environment. Uranyl ions prefer to be adsorbed at deprotonated O sites on the Mo2COH surface and S sites on the MoS2 side of the heterojunctions, resulting in the formation of bidentate configurations. In addition to coordination interaction, H-bond and van der Waals interactions can also play an important role in binding configurations. More importantly, the oxidation state U(VI) can be reduced to U(V) and then to U(IV) caused by the strong reducibility of the Mo2COH surface at room temperature, whereas the uranyl complex can move freely on the MoS2 surface. However, the coordination number of U with respect to H2O in the first hydration shell on the Mo2COH surface remains unchanged and is found to be 3, which is similar to that on the MoS2 surface. This work provides novel nanosorbents for the removal of uranyl from wastewater. The present viewpoint provides valuable mechanistic interpretations for uranyl adsorption and will give a supplement to the experimental research. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.3c00625 |