Loading…

Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems

The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor o...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-09, Vol.124 (36), p.7219-7227
Main Authors: Cravcenco, Alexei, Ye, Chen, Gräfenstein, Jürgen, Börjesson, Karl
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7227
container_issue 36
container_start_page 7219
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Cravcenco, Alexei
Ye, Chen
Gräfenstein, Jürgen
Börjesson, Karl
description The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.
doi_str_mv 10.1021/acs.jpca.0c05035
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpca_0c05035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b777568642</sourcerecordid><originalsourceid>FETCH-acs_journals_10_1021_acs_jpca_0c050353</originalsourceid><addsrcrecordid>eNqVj0FOAkEQRTtGE0Hcu6wDOGP1jG1kqQKBrbLvNE1BZgLdk6oxOjuX7rkWp-AkNoQLuKpXLz-V-krdacw1FvrBecnrxrscPRoszYXqaVNgZgptLhPj8zAzT-XwWvVFakTUZfHYU_UstMTNxnWwoPaLKMAk7n9ZkgUXljCi7yOOA_G6gzm7IKu0v7uWBKoAM4lb4srDKIbIh5_dK1fLNSV48Z6aNjJ8dOnaVgbqauU2QrfneaPuJ-P52zRLr9s6fnJI1mq0xz72JFMfe-5T_jP-B5uFWEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cravcenco, Alexei ; Ye, Chen ; Gräfenstein, Jürgen ; Börjesson, Karl</creator><creatorcontrib>Cravcenco, Alexei ; Ye, Chen ; Gräfenstein, Jürgen ; Börjesson, Karl</creatorcontrib><description>The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c05035</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-09, Vol.124 (36), p.7219-7227</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8533-201X ; 0000-0003-4766-6515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cravcenco, Alexei</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Gräfenstein, Jürgen</creatorcontrib><creatorcontrib>Börjesson, Karl</creatorcontrib><title>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.</description><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVj0FOAkEQRTtGE0Hcu6wDOGP1jG1kqQKBrbLvNE1BZgLdk6oxOjuX7rkWp-AkNoQLuKpXLz-V-krdacw1FvrBecnrxrscPRoszYXqaVNgZgptLhPj8zAzT-XwWvVFakTUZfHYU_UstMTNxnWwoPaLKMAk7n9ZkgUXljCi7yOOA_G6gzm7IKu0v7uWBKoAM4lb4srDKIbIh5_dK1fLNSV48Z6aNjJ8dOnaVgbqauU2QrfneaPuJ-P52zRLr9s6fnJI1mq0xz72JFMfe-5T_jP-B5uFWEQ</recordid><startdate>20200910</startdate><enddate>20200910</enddate><creator>Cravcenco, Alexei</creator><creator>Ye, Chen</creator><creator>Gräfenstein, Jürgen</creator><creator>Börjesson, Karl</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-8533-201X</orcidid><orcidid>https://orcid.org/0000-0003-4766-6515</orcidid></search><sort><creationdate>20200910</creationdate><title>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</title><author>Cravcenco, Alexei ; Ye, Chen ; Gräfenstein, Jürgen ; Börjesson, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-acs_journals_10_1021_acs_jpca_0c050353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Kinetics, Dynamics, Photochemistry, and Excited States</topic><toplevel>online_resources</toplevel><creatorcontrib>Cravcenco, Alexei</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Gräfenstein, Jürgen</creatorcontrib><creatorcontrib>Börjesson, Karl</creatorcontrib><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cravcenco, Alexei</au><au>Ye, Chen</au><au>Gräfenstein, Jürgen</au><au>Börjesson, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-09-10</date><risdate>2020</risdate><volume>124</volume><issue>36</issue><spage>7219</spage><epage>7227</epage><pages>7219-7227</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c05035</doi><orcidid>https://orcid.org/0000-0001-8533-201X</orcidid><orcidid>https://orcid.org/0000-0003-4766-6515</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-09, Vol.124 (36), p.7219-7227
issn 1089-5639
1520-5215
language eng
recordid cdi_acs_journals_10_1021_acs_jpca_0c05035
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects A: Kinetics, Dynamics, Photochemistry, and Excited States
title Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20Fo%CC%88rster%20and%20Dexter%20Energy%20Transfer%20Rates%20in%20Isomeric%20Donor%E2%80%93Bridge%E2%80%93Acceptor%20Systems&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Cravcenco,%20Alexei&rft.date=2020-09-10&rft.volume=124&rft.issue=36&rft.spage=7219&rft.epage=7227&rft.pages=7219-7227&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c05035&rft_dat=%3Cacs%3Eb777568642%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-acs_journals_10_1021_acs_jpca_0c050353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true