Loading…
Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems
The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor o...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-09, Vol.124 (36), p.7219-7227 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7227 |
container_issue | 36 |
container_start_page | 7219 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 124 |
creator | Cravcenco, Alexei Ye, Chen Gräfenstein, Jürgen Börjesson, Karl |
description | The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials. |
doi_str_mv | 10.1021/acs.jpca.0c05035 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpca_0c05035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b777568642</sourcerecordid><originalsourceid>FETCH-acs_journals_10_1021_acs_jpca_0c050353</originalsourceid><addsrcrecordid>eNqVj0FOAkEQRTtGE0Hcu6wDOGP1jG1kqQKBrbLvNE1BZgLdk6oxOjuX7rkWp-AkNoQLuKpXLz-V-krdacw1FvrBecnrxrscPRoszYXqaVNgZgptLhPj8zAzT-XwWvVFakTUZfHYU_UstMTNxnWwoPaLKMAk7n9ZkgUXljCi7yOOA_G6gzm7IKu0v7uWBKoAM4lb4srDKIbIh5_dK1fLNSV48Z6aNjJ8dOnaVgbqauU2QrfneaPuJ-P52zRLr9s6fnJI1mq0xz72JFMfe-5T_jP-B5uFWEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cravcenco, Alexei ; Ye, Chen ; Gräfenstein, Jürgen ; Börjesson, Karl</creator><creatorcontrib>Cravcenco, Alexei ; Ye, Chen ; Gräfenstein, Jürgen ; Börjesson, Karl</creatorcontrib><description>The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c05035</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-09, Vol.124 (36), p.7219-7227</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8533-201X ; 0000-0003-4766-6515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cravcenco, Alexei</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Gräfenstein, Jürgen</creatorcontrib><creatorcontrib>Börjesson, Karl</creatorcontrib><title>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.</description><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVj0FOAkEQRTtGE0Hcu6wDOGP1jG1kqQKBrbLvNE1BZgLdk6oxOjuX7rkWp-AkNoQLuKpXLz-V-krdacw1FvrBecnrxrscPRoszYXqaVNgZgptLhPj8zAzT-XwWvVFakTUZfHYU_UstMTNxnWwoPaLKMAk7n9ZkgUXljCi7yOOA_G6gzm7IKu0v7uWBKoAM4lb4srDKIbIh5_dK1fLNSV48Z6aNjJ8dOnaVgbqauU2QrfneaPuJ-P52zRLr9s6fnJI1mq0xz72JFMfe-5T_jP-B5uFWEQ</recordid><startdate>20200910</startdate><enddate>20200910</enddate><creator>Cravcenco, Alexei</creator><creator>Ye, Chen</creator><creator>Gräfenstein, Jürgen</creator><creator>Börjesson, Karl</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-8533-201X</orcidid><orcidid>https://orcid.org/0000-0003-4766-6515</orcidid></search><sort><creationdate>20200910</creationdate><title>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</title><author>Cravcenco, Alexei ; Ye, Chen ; Gräfenstein, Jürgen ; Börjesson, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-acs_journals_10_1021_acs_jpca_0c050353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Kinetics, Dynamics, Photochemistry, and Excited States</topic><toplevel>online_resources</toplevel><creatorcontrib>Cravcenco, Alexei</creatorcontrib><creatorcontrib>Ye, Chen</creatorcontrib><creatorcontrib>Gräfenstein, Jürgen</creatorcontrib><creatorcontrib>Börjesson, Karl</creatorcontrib><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cravcenco, Alexei</au><au>Ye, Chen</au><au>Gräfenstein, Jürgen</au><au>Börjesson, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-09-10</date><risdate>2020</risdate><volume>124</volume><issue>36</issue><spage>7219</spage><epage>7227</epage><pages>7219-7227</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor–bridge–acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor–bridge–acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge–acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c05035</doi><orcidid>https://orcid.org/0000-0001-8533-201X</orcidid><orcidid>https://orcid.org/0000-0003-4766-6515</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-09, Vol.124 (36), p.7219-7227 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpca_0c05035 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | A: Kinetics, Dynamics, Photochemistry, and Excited States |
title | Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20Fo%CC%88rster%20and%20Dexter%20Energy%20Transfer%20Rates%20in%20Isomeric%20Donor%E2%80%93Bridge%E2%80%93Acceptor%20Systems&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Cravcenco,%20Alexei&rft.date=2020-09-10&rft.volume=124&rft.issue=36&rft.spage=7219&rft.epage=7227&rft.pages=7219-7227&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c05035&rft_dat=%3Cacs%3Eb777568642%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-acs_journals_10_1021_acs_jpca_0c050353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |