Loading…

Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes

Bi2WO6 is one of the simplest members of the versatile Aurivillius oxide family of materials. As an intriguing model system for Aurivillius oxides, BiVO4 exhibits low water oxidation onset potentials (∼0.5–0.6 V RHE) for driven solar water oxidation. Despite this, Bi2WO6 also produces low photocurre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2020-09, Vol.124 (35), p.18859-18867
Main Authors: Moss, Benjamin, Le, Haonan, Corby, Sacha, Morita, Kazuki, Selim, Shababa, Sotelo-Vazquez, Carlos, Chen, Yunuo, Borthwick, Alexander, Wilson, Anna, Blackman, Chris, Durrant, James R, Walsh, Aron, Kafizas, Andreas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 18867
container_issue 35
container_start_page 18859
container_title Journal of physical chemistry. C
container_volume 124
creator Moss, Benjamin
Le, Haonan
Corby, Sacha
Morita, Kazuki
Selim, Shababa
Sotelo-Vazquez, Carlos
Chen, Yunuo
Borthwick, Alexander
Wilson, Anna
Blackman, Chris
Durrant, James R
Walsh, Aron
Kafizas, Andreas
description Bi2WO6 is one of the simplest members of the versatile Aurivillius oxide family of materials. As an intriguing model system for Aurivillius oxides, BiVO4 exhibits low water oxidation onset potentials (∼0.5–0.6 V RHE) for driven solar water oxidation. Despite this, Bi2WO6 also produces low photocurrents in comparison to other metal oxides. Due to a lack of in situ studies, the reasons for such poor performance are not understood. In this study, Bi2WO6 photoanodes are synthesized by aerosol-assisted chemical vapor deposition. The charge carrier dynamics of Bi2WO6 are studied in situ under water oxidation conditions, and the rate of both bulk recombination and water oxidation is found to be comparable to other metal oxide photoanodes. However, the rate of electron extraction is at least 10 times slower than the slowest kinetics previously reported in an oxide photoanode. First-principles analysis indicates that the slow electron extraction kinetics are linked to a strong anisotropy in the conduction band. Preferred or epitaxial growth along the conductive axes is a strategy to overcome slow electron transport and low photocurrent densities in layered materials such as Bi2WO6.
doi_str_mv 10.1021/acs.jpcc.0c03539
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_0c03539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b253427793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a164t-a9ba36e2877284a7b703273e6599a24e334f25f55af5ee402694c5999f239b1c3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoNYsFbvHvMA7ppkkk1zrKVWYaE9VHpcZmOCu7TJkqzv76rF0__xD8wwHyEPnJWcCf6ENpf9YG3JLAMF5orMuQFRaKnU9T9LfUNuc-4ZU8A4zMl2FbocxxSHztLNydkJAz0kDHmIaaR1d-7GTPcu-ZjOGKyj0dPnThx3Fd1_xjFiiB8u35GZx1N295dckPeXzWH9WtS77dt6VRfIKzkWaFqEyoml1mIpUbeagdDgKmUMCukApBfKK4VeOSeZqIy008x4AablFhbk8W_v9G_Tx68UpmsNZ82PhOa3nCQ0FwnwDVawUOU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Moss, Benjamin ; Le, Haonan ; Corby, Sacha ; Morita, Kazuki ; Selim, Shababa ; Sotelo-Vazquez, Carlos ; Chen, Yunuo ; Borthwick, Alexander ; Wilson, Anna ; Blackman, Chris ; Durrant, James R ; Walsh, Aron ; Kafizas, Andreas</creator><creatorcontrib>Moss, Benjamin ; Le, Haonan ; Corby, Sacha ; Morita, Kazuki ; Selim, Shababa ; Sotelo-Vazquez, Carlos ; Chen, Yunuo ; Borthwick, Alexander ; Wilson, Anna ; Blackman, Chris ; Durrant, James R ; Walsh, Aron ; Kafizas, Andreas</creatorcontrib><description>Bi2WO6 is one of the simplest members of the versatile Aurivillius oxide family of materials. As an intriguing model system for Aurivillius oxides, BiVO4 exhibits low water oxidation onset potentials (∼0.5–0.6 V RHE) for driven solar water oxidation. Despite this, Bi2WO6 also produces low photocurrents in comparison to other metal oxides. Due to a lack of in situ studies, the reasons for such poor performance are not understood. In this study, Bi2WO6 photoanodes are synthesized by aerosol-assisted chemical vapor deposition. The charge carrier dynamics of Bi2WO6 are studied in situ under water oxidation conditions, and the rate of both bulk recombination and water oxidation is found to be comparable to other metal oxide photoanodes. However, the rate of electron extraction is at least 10 times slower than the slowest kinetics previously reported in an oxide photoanode. First-principles analysis indicates that the slow electron extraction kinetics are linked to a strong anisotropy in the conduction band. Preferred or epitaxial growth along the conductive axes is a strategy to overcome slow electron transport and low photocurrent densities in layered materials such as Bi2WO6.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c03539</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>Journal of physical chemistry. C, 2020-09, Vol.124 (35), p.18859-18867</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5398-0661 ; 0000-0001-8353-7345 ; 0000-0002-2558-6963 ; 0000-0003-0700-5843 ; 0000-0002-5786-1587 ; 0000-0001-7863-5426 ; 0000-0002-2282-4639 ; 0000-0003-0949-4548 ; 0000-0001-5460-7033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moss, Benjamin</creatorcontrib><creatorcontrib>Le, Haonan</creatorcontrib><creatorcontrib>Corby, Sacha</creatorcontrib><creatorcontrib>Morita, Kazuki</creatorcontrib><creatorcontrib>Selim, Shababa</creatorcontrib><creatorcontrib>Sotelo-Vazquez, Carlos</creatorcontrib><creatorcontrib>Chen, Yunuo</creatorcontrib><creatorcontrib>Borthwick, Alexander</creatorcontrib><creatorcontrib>Wilson, Anna</creatorcontrib><creatorcontrib>Blackman, Chris</creatorcontrib><creatorcontrib>Durrant, James R</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><creatorcontrib>Kafizas, Andreas</creatorcontrib><title>Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Bi2WO6 is one of the simplest members of the versatile Aurivillius oxide family of materials. As an intriguing model system for Aurivillius oxides, BiVO4 exhibits low water oxidation onset potentials (∼0.5–0.6 V RHE) for driven solar water oxidation. Despite this, Bi2WO6 also produces low photocurrents in comparison to other metal oxides. Due to a lack of in situ studies, the reasons for such poor performance are not understood. In this study, Bi2WO6 photoanodes are synthesized by aerosol-assisted chemical vapor deposition. The charge carrier dynamics of Bi2WO6 are studied in situ under water oxidation conditions, and the rate of both bulk recombination and water oxidation is found to be comparable to other metal oxide photoanodes. However, the rate of electron extraction is at least 10 times slower than the slowest kinetics previously reported in an oxide photoanode. First-principles analysis indicates that the slow electron extraction kinetics are linked to a strong anisotropy in the conduction band. Preferred or epitaxial growth along the conductive axes is a strategy to overcome slow electron transport and low photocurrent densities in layered materials such as Bi2WO6.</description><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMFKAzEQhoNYsFbvHvMA7ppkkk1zrKVWYaE9VHpcZmOCu7TJkqzv76rF0__xD8wwHyEPnJWcCf6ENpf9YG3JLAMF5orMuQFRaKnU9T9LfUNuc-4ZU8A4zMl2FbocxxSHztLNydkJAz0kDHmIaaR1d-7GTPcu-ZjOGKyj0dPnThx3Fd1_xjFiiB8u35GZx1N295dckPeXzWH9WtS77dt6VRfIKzkWaFqEyoml1mIpUbeagdDgKmUMCukApBfKK4VeOSeZqIy008x4AablFhbk8W_v9G_Tx68UpmsNZ82PhOa3nCQ0FwnwDVawUOU</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Moss, Benjamin</creator><creator>Le, Haonan</creator><creator>Corby, Sacha</creator><creator>Morita, Kazuki</creator><creator>Selim, Shababa</creator><creator>Sotelo-Vazquez, Carlos</creator><creator>Chen, Yunuo</creator><creator>Borthwick, Alexander</creator><creator>Wilson, Anna</creator><creator>Blackman, Chris</creator><creator>Durrant, James R</creator><creator>Walsh, Aron</creator><creator>Kafizas, Andreas</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-5398-0661</orcidid><orcidid>https://orcid.org/0000-0001-8353-7345</orcidid><orcidid>https://orcid.org/0000-0002-2558-6963</orcidid><orcidid>https://orcid.org/0000-0003-0700-5843</orcidid><orcidid>https://orcid.org/0000-0002-5786-1587</orcidid><orcidid>https://orcid.org/0000-0001-7863-5426</orcidid><orcidid>https://orcid.org/0000-0002-2282-4639</orcidid><orcidid>https://orcid.org/0000-0003-0949-4548</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid></search><sort><creationdate>20200903</creationdate><title>Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes</title><author>Moss, Benjamin ; Le, Haonan ; Corby, Sacha ; Morita, Kazuki ; Selim, Shababa ; Sotelo-Vazquez, Carlos ; Chen, Yunuo ; Borthwick, Alexander ; Wilson, Anna ; Blackman, Chris ; Durrant, James R ; Walsh, Aron ; Kafizas, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a164t-a9ba36e2877284a7b703273e6599a24e334f25f55af5ee402694c5999f239b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moss, Benjamin</creatorcontrib><creatorcontrib>Le, Haonan</creatorcontrib><creatorcontrib>Corby, Sacha</creatorcontrib><creatorcontrib>Morita, Kazuki</creatorcontrib><creatorcontrib>Selim, Shababa</creatorcontrib><creatorcontrib>Sotelo-Vazquez, Carlos</creatorcontrib><creatorcontrib>Chen, Yunuo</creatorcontrib><creatorcontrib>Borthwick, Alexander</creatorcontrib><creatorcontrib>Wilson, Anna</creatorcontrib><creatorcontrib>Blackman, Chris</creatorcontrib><creatorcontrib>Durrant, James R</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><creatorcontrib>Kafizas, Andreas</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moss, Benjamin</au><au>Le, Haonan</au><au>Corby, Sacha</au><au>Morita, Kazuki</au><au>Selim, Shababa</au><au>Sotelo-Vazquez, Carlos</au><au>Chen, Yunuo</au><au>Borthwick, Alexander</au><au>Wilson, Anna</au><au>Blackman, Chris</au><au>Durrant, James R</au><au>Walsh, Aron</au><au>Kafizas, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>124</volume><issue>35</issue><spage>18859</spage><epage>18867</epage><pages>18859-18867</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Bi2WO6 is one of the simplest members of the versatile Aurivillius oxide family of materials. As an intriguing model system for Aurivillius oxides, BiVO4 exhibits low water oxidation onset potentials (∼0.5–0.6 V RHE) for driven solar water oxidation. Despite this, Bi2WO6 also produces low photocurrents in comparison to other metal oxides. Due to a lack of in situ studies, the reasons for such poor performance are not understood. In this study, Bi2WO6 photoanodes are synthesized by aerosol-assisted chemical vapor deposition. The charge carrier dynamics of Bi2WO6 are studied in situ under water oxidation conditions, and the rate of both bulk recombination and water oxidation is found to be comparable to other metal oxide photoanodes. However, the rate of electron extraction is at least 10 times slower than the slowest kinetics previously reported in an oxide photoanode. First-principles analysis indicates that the slow electron extraction kinetics are linked to a strong anisotropy in the conduction band. Preferred or epitaxial growth along the conductive axes is a strategy to overcome slow electron transport and low photocurrent densities in layered materials such as Bi2WO6.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c03539</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5398-0661</orcidid><orcidid>https://orcid.org/0000-0001-8353-7345</orcidid><orcidid>https://orcid.org/0000-0002-2558-6963</orcidid><orcidid>https://orcid.org/0000-0003-0700-5843</orcidid><orcidid>https://orcid.org/0000-0002-5786-1587</orcidid><orcidid>https://orcid.org/0000-0001-7863-5426</orcidid><orcidid>https://orcid.org/0000-0002-2282-4639</orcidid><orcidid>https://orcid.org/0000-0003-0949-4548</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-09, Vol.124 (35), p.18859-18867
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_0c03539
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Energy Conversion and Storage
Energy and Charge Transport
title Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Electron%20Transport%20Limits%20Performance%20of%20Bi2WO6%20Photoanodes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Moss,%20Benjamin&rft.date=2020-09-03&rft.volume=124&rft.issue=35&rft.spage=18859&rft.epage=18867&rft.pages=18859-18867&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c03539&rft_dat=%3Cacs%3Eb253427793%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a164t-a9ba36e2877284a7b703273e6599a24e334f25f55af5ee402694c5999f239b1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true