Loading…

CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms

Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, neverthe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2020-08, Vol.124 (31), p.16806-16819
Main Authors: Wolf, A. J, Peeters, F. J. J, Groen, P. W. C, Bongers, W. A, van de Sanden, M. C. M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 16819
container_issue 31
container_start_page 16806
container_title Journal of physical chemistry. C
container_volume 124
creator Wolf, A. J
Peeters, F. J. J
Groen, P. W. C
Bongers, W. A
van de Sanden, M. C. M
description Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortex-induced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.
doi_str_mv 10.1021/acs.jpcc.0c03637
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_0c03637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b561994058</sourcerecordid><originalsourceid>FETCH-LOGICAL-a164t-5cad471d6f5c62e448361b65f13a833a75cd300017a0a473116229e92114a0c73</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw55gfQMqunw03FJ5SoRKCc9g6TnDV2ihO-f0ktOK0syPNjPQxdokwQ-B4TTbN1t_WzsCC0MIcsQkWgudGKnX8r6U5ZWcprQGUABQT9lkueVbG8OO65GPIfMheY9gF38Rum935ZL-oa126GbULPYV240M7filaT_0YolBnb87G7cqHvfPihlzwaZvO2UlDm-QuDnfKPh7u38unfLF8fC5vFzmhln2uLNXSYK0bZTV3Us6FxpVWDQqaC0FG2VoAABoCkkYgas4LV3BESWCNmLKrfe8AolrHXReGtQqhGulUf-ZApzrQEb8welob</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wolf, A. J ; Peeters, F. J. J ; Groen, P. W. C ; Bongers, W. A ; van de Sanden, M. C. M</creator><creatorcontrib>Wolf, A. J ; Peeters, F. J. J ; Groen, P. W. C ; Bongers, W. A ; van de Sanden, M. C. M</creatorcontrib><description>Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortex-induced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c03637</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>Journal of physical chemistry. C, 2020-08, Vol.124 (31), p.16806-16819</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4119-9971 ; 0000-0003-2286-9818 ; 0000-0001-8986-8700 ; 0000-0002-8953-2104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wolf, A. J</creatorcontrib><creatorcontrib>Peeters, F. J. J</creatorcontrib><creatorcontrib>Groen, P. W. C</creatorcontrib><creatorcontrib>Bongers, W. A</creatorcontrib><creatorcontrib>van de Sanden, M. C. M</creatorcontrib><title>CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortex-induced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.</description><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtPwzAQhC0EEqVw55gfQMqunw03FJ5SoRKCc9g6TnDV2ihO-f0ktOK0syPNjPQxdokwQ-B4TTbN1t_WzsCC0MIcsQkWgudGKnX8r6U5ZWcprQGUABQT9lkueVbG8OO65GPIfMheY9gF38Rum935ZL-oa126GbULPYV240M7filaT_0YolBnb87G7cqHvfPihlzwaZvO2UlDm-QuDnfKPh7u38unfLF8fC5vFzmhln2uLNXSYK0bZTV3Us6FxpVWDQqaC0FG2VoAABoCkkYgas4LV3BESWCNmLKrfe8AolrHXReGtQqhGulUf-ZApzrQEb8welob</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Wolf, A. J</creator><creator>Peeters, F. J. J</creator><creator>Groen, P. W. C</creator><creator>Bongers, W. A</creator><creator>van de Sanden, M. C. M</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-4119-9971</orcidid><orcidid>https://orcid.org/0000-0003-2286-9818</orcidid><orcidid>https://orcid.org/0000-0001-8986-8700</orcidid><orcidid>https://orcid.org/0000-0002-8953-2104</orcidid></search><sort><creationdate>20200806</creationdate><title>CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms</title><author>Wolf, A. J ; Peeters, F. J. J ; Groen, P. W. C ; Bongers, W. A ; van de Sanden, M. C. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a164t-5cad471d6f5c62e448361b65f13a833a75cd300017a0a473116229e92114a0c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, A. J</creatorcontrib><creatorcontrib>Peeters, F. J. J</creatorcontrib><creatorcontrib>Groen, P. W. C</creatorcontrib><creatorcontrib>Bongers, W. A</creatorcontrib><creatorcontrib>van de Sanden, M. C. M</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, A. J</au><au>Peeters, F. J. J</au><au>Groen, P. W. C</au><au>Bongers, W. A</au><au>van de Sanden, M. C. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-08-06</date><risdate>2020</risdate><volume>124</volume><issue>31</issue><spage>16806</spage><epage>16819</epage><pages>16806-16819</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Motivated by environmental applications such as synthetic fuel synthesis, plasma-driven conversion shows promise for efficient and scalable gas conversion of CO2 to CO. Both discharge contraction and turbulent transport have a significant impact on the plasma processing conditions, but are, nevertheless, poorly understood. This work combines experiments and modeling to investigate how these aspects influence the CO production and destruction mechanisms in the vortex-stabilized CO2 microwave plasma reactor. For this, a two-dimensional axisymmetric tubular chemical kinetics model of the reactor is developed, with careful consideration of the nonuniform nature of the plasma and the vortex-induced radial turbulent transport. Energy efficiency and conversion of the dissociation process show a good agreement with the numerical results over a broad pressure range from 80 to 600 mbar. The occurrence of an energy efficiency peak between 100 and 200 mbar is associated with a discharge mode transition. The net CO production rate is inhibited at low pressure by the plasma temperature, whereas recombination of CO to CO2 dominates at high pressure. Turbulence-induced cooling and dilution of plasma products limit the extent of the latter. The maxima in energy efficiency observed experimentally around 40% are related to limits imposed by production and recombination processes. Based on these insights, feasible approaches for optimization of the plasma dissociation process are discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c03637</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4119-9971</orcidid><orcidid>https://orcid.org/0000-0003-2286-9818</orcidid><orcidid>https://orcid.org/0000-0001-8986-8700</orcidid><orcidid>https://orcid.org/0000-0002-8953-2104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-08, Vol.124 (31), p.16806-16819
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_0c03637
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Energy Conversion and Storage
Energy and Charge Transport
title CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Conversion%20in%20Nonuniform%20Discharges:%20Disentangling%20Dissociation%20and%20Recombination%20Mechanisms&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Wolf,%20A.%20J&rft.date=2020-08-06&rft.volume=124&rft.issue=31&rft.spage=16806&rft.epage=16819&rft.pages=16806-16819&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c03637&rft_dat=%3Cacs%3Eb561994058%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a164t-5cad471d6f5c62e448361b65f13a833a75cd300017a0a473116229e92114a0c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true