Loading…

Visible-Light Photocurrent in Nanostructured High-Pressure TiO2‑II (Columbite) Phase

Titanium oxide (TiO2), with the anatase and rutile structures, has been widely studied for photovoltaic and solar cell applications, but its main drawback is large bandgap, which limits its activity to the UV light region. In this study, a high-pressure TiO2-II (columbite) phase, which has already b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2020-06, Vol.124 (25), p.13930-13935
Main Authors: Wang, Qing, Watanabe, Motonori, Edalati, Kaveh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Titanium oxide (TiO2), with the anatase and rutile structures, has been widely studied for photovoltaic and solar cell applications, but its main drawback is large bandgap, which limits its activity to the UV light region. In this study, a high-pressure TiO2-II (columbite) phase, which has already been suggested to have low bandgap with downward-shifted Fermi level, is stabilized by the high-pressure torsion (HPT) method and its photovoltaic activity is examined. The TiO2-II formation by HPT processing leads to photocurrent generation under visible light, while the visible-light photocurrent is enhanced further after the recovery of oxygen vacancies by thermal annealing.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.0c03923