Loading…
Visible-Light Photocurrent in Nanostructured High-Pressure TiO2‑II (Columbite) Phase
Titanium oxide (TiO2), with the anatase and rutile structures, has been widely studied for photovoltaic and solar cell applications, but its main drawback is large bandgap, which limits its activity to the UV light region. In this study, a high-pressure TiO2-II (columbite) phase, which has already b...
Saved in:
Published in: | Journal of physical chemistry. C 2020-06, Vol.124 (25), p.13930-13935 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13935 |
container_issue | 25 |
container_start_page | 13930 |
container_title | Journal of physical chemistry. C |
container_volume | 124 |
creator | Wang, Qing Watanabe, Motonori Edalati, Kaveh |
description | Titanium oxide (TiO2), with the anatase and rutile structures, has been widely studied for photovoltaic and solar cell applications, but its main drawback is large bandgap, which limits its activity to the UV light region. In this study, a high-pressure TiO2-II (columbite) phase, which has already been suggested to have low bandgap with downward-shifted Fermi level, is stabilized by the high-pressure torsion (HPT) method and its photovoltaic activity is examined. The TiO2-II formation by HPT processing leads to photocurrent generation under visible light, while the visible-light photocurrent is enhanced further after the recovery of oxygen vacancies by thermal annealing. |
doi_str_mv | 10.1021/acs.jpcc.0c03923 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_0c03923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h87919702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-3da7576324fe8a6019cb4904cc127fb39f8df8680e344e555634e3d123418593</originalsourceid><addsrcrecordid>eNo9kEFPhDAQhRujievq3WOPmlhsOy2UoyHqkhB3D2SvpJTiQhBMW-7-Bf-iv0TUjad58_LyJvMhdM1oxChn99r4qH83JqKGQsrhBK1YCpwkQsrTfy2Sc3ThfU-pBMpghfb7znf1YEnRvR4C3h2mMJnZOTsG3I34RY-TD242YXa2wZslRHbOer-suOy2_OvjM8_xTTYN81vdBXu7VGhvL9FZqwdvr45zjcqnxzLbkGL7nGcPBdFcqkCg0YlMYuCitUrHlKWmFikVxjCetDWkrWpaFStqQQgrpYxBWGgYB8GUTGGN7v5ql--rfprduByrGK1-kFS_5oKkOiKBbw4sVmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visible-Light Photocurrent in Nanostructured High-Pressure TiO2‑II (Columbite) Phase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Qing ; Watanabe, Motonori ; Edalati, Kaveh</creator><creatorcontrib>Wang, Qing ; Watanabe, Motonori ; Edalati, Kaveh</creatorcontrib><description>Titanium oxide (TiO2), with the anatase and rutile structures, has been widely studied for photovoltaic and solar cell applications, but its main drawback is large bandgap, which limits its activity to the UV light region. In this study, a high-pressure TiO2-II (columbite) phase, which has already been suggested to have low bandgap with downward-shifted Fermi level, is stabilized by the high-pressure torsion (HPT) method and its photovoltaic activity is examined. The TiO2-II formation by HPT processing leads to photocurrent generation under visible light, while the visible-light photocurrent is enhanced further after the recovery of oxygen vacancies by thermal annealing.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c03923</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Plasmonics; Optical, Magnetic, and Hybrid Materials</subject><ispartof>Journal of physical chemistry. C, 2020-06, Vol.124 (25), p.13930-13935</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3621-4361 ; 0000-0002-3771-3456 ; 0000-0003-3885-2121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Watanabe, Motonori</creatorcontrib><creatorcontrib>Edalati, Kaveh</creatorcontrib><title>Visible-Light Photocurrent in Nanostructured High-Pressure TiO2‑II (Columbite) Phase</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Titanium oxide (TiO2), with the anatase and rutile structures, has been widely studied for photovoltaic and solar cell applications, but its main drawback is large bandgap, which limits its activity to the UV light region. In this study, a high-pressure TiO2-II (columbite) phase, which has already been suggested to have low bandgap with downward-shifted Fermi level, is stabilized by the high-pressure torsion (HPT) method and its photovoltaic activity is examined. The TiO2-II formation by HPT processing leads to photocurrent generation under visible light, while the visible-light photocurrent is enhanced further after the recovery of oxygen vacancies by thermal annealing.</description><subject>C: Plasmonics; Optical, Magnetic, and Hybrid Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFPhDAQhRujievq3WOPmlhsOy2UoyHqkhB3D2SvpJTiQhBMW-7-Bf-iv0TUjad58_LyJvMhdM1oxChn99r4qH83JqKGQsrhBK1YCpwkQsrTfy2Sc3ThfU-pBMpghfb7znf1YEnRvR4C3h2mMJnZOTsG3I34RY-TD242YXa2wZslRHbOer-suOy2_OvjM8_xTTYN81vdBXu7VGhvL9FZqwdvr45zjcqnxzLbkGL7nGcPBdFcqkCg0YlMYuCitUrHlKWmFikVxjCetDWkrWpaFStqQQgrpYxBWGgYB8GUTGGN7v5ql--rfprduByrGK1-kFS_5oKkOiKBbw4sVmA</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Wang, Qing</creator><creator>Watanabe, Motonori</creator><creator>Edalati, Kaveh</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-3621-4361</orcidid><orcidid>https://orcid.org/0000-0002-3771-3456</orcidid><orcidid>https://orcid.org/0000-0003-3885-2121</orcidid></search><sort><creationdate>20200625</creationdate><title>Visible-Light Photocurrent in Nanostructured High-Pressure TiO2‑II (Columbite) Phase</title><author>Wang, Qing ; Watanabe, Motonori ; Edalati, Kaveh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-3da7576324fe8a6019cb4904cc127fb39f8df8680e344e555634e3d123418593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Plasmonics; Optical, Magnetic, and Hybrid Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Watanabe, Motonori</creatorcontrib><creatorcontrib>Edalati, Kaveh</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qing</au><au>Watanabe, Motonori</au><au>Edalati, Kaveh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible-Light Photocurrent in Nanostructured High-Pressure TiO2‑II (Columbite) Phase</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-06-25</date><risdate>2020</risdate><volume>124</volume><issue>25</issue><spage>13930</spage><epage>13935</epage><pages>13930-13935</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Titanium oxide (TiO2), with the anatase and rutile structures, has been widely studied for photovoltaic and solar cell applications, but its main drawback is large bandgap, which limits its activity to the UV light region. In this study, a high-pressure TiO2-II (columbite) phase, which has already been suggested to have low bandgap with downward-shifted Fermi level, is stabilized by the high-pressure torsion (HPT) method and its photovoltaic activity is examined. The TiO2-II formation by HPT processing leads to photocurrent generation under visible light, while the visible-light photocurrent is enhanced further after the recovery of oxygen vacancies by thermal annealing.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c03923</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3621-4361</orcidid><orcidid>https://orcid.org/0000-0002-3771-3456</orcidid><orcidid>https://orcid.org/0000-0003-3885-2121</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2020-06, Vol.124 (25), p.13930-13935 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_0c03923 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Plasmonics Optical, Magnetic, and Hybrid Materials |
title | Visible-Light Photocurrent in Nanostructured High-Pressure TiO2‑II (Columbite) Phase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible-Light%20Photocurrent%20in%20Nanostructured%20High-Pressure%20TiO2%E2%80%91II%20(Columbite)%20Phase&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Wang,%20Qing&rft.date=2020-06-25&rft.volume=124&rft.issue=25&rft.spage=13930&rft.epage=13935&rft.pages=13930-13935&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c03923&rft_dat=%3Cacs%3Eh87919702%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a258t-3da7576324fe8a6019cb4904cc127fb39f8df8680e344e555634e3d123418593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |