Loading…

Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports

Poly­(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2022-06, Vol.126 (25), p.10419-10428
Main Authors: Correll, Helen, Leick, Noemi, Mow, Rachel E., Russell-Parks, Glory A., Pang, Simon H., Gennett, Thomas, Braunecker, Wade A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10428
container_issue 25
container_start_page 10419
container_title Journal of physical chemistry. C
container_volume 126
creator Correll, Helen
Leick, Noemi
Mow, Rachel E.
Russell-Parks, Glory A.
Pang, Simon H.
Gennett, Thomas
Braunecker, Wade A.
description Poly­(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis­(4-hydroxyphenyl)­ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.
doi_str_mv 10.1021/acs.jpcc.2c01099
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c01099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f79375477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a164t-e4a31e5754550ba01ed4c7b4e265dd61dedb7089eda4bc76226a57b54f63220b3</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqWwM_oHkOLPmIwhUEAqFAmYI3-8kRxSO3KSof-eFCqmO91wd3oQuqZkRQmjt9oOq7a3dsUsoaQoTtCCFpxlSkh5-u-FOkcXw9ASIjmhfIGadTfFBIOFMOL3FA3g2OBy50PsY7ffQcKv0fjOj3vsA76fum-sgzv4Nx2ijaHxARx-8AnsiEufcLVluNL9OCXAH1PfxzQOl-is0d0AV0ddoq_142f1nG22Ty9Vuck0zcWYgdCcglRyPk2MJhScsMoIYLl0LqcOnFHkrgCnhbEqZyzXUhkpmpwzRgxfopu_3hlH3cYphXmtpqQ-MKp_w5lRfWTEfwBy1lyo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Correll, Helen ; Leick, Noemi ; Mow, Rachel E. ; Russell-Parks, Glory A. ; Pang, Simon H. ; Gennett, Thomas ; Braunecker, Wade A.</creator><creatorcontrib>Correll, Helen ; Leick, Noemi ; Mow, Rachel E. ; Russell-Parks, Glory A. ; Pang, Simon H. ; Gennett, Thomas ; Braunecker, Wade A.</creatorcontrib><description>Poly­(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis­(4-hydroxyphenyl)­ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c01099</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2022-06, Vol.126 (25), p.10419-10428</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2014-6264 ; 0000-0001-9059-1681 ; 0000-0003-2913-1648 ; 0000-0003-0773-9580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Correll, Helen</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mow, Rachel E.</creatorcontrib><creatorcontrib>Russell-Parks, Glory A.</creatorcontrib><creatorcontrib>Pang, Simon H.</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Braunecker, Wade A.</creatorcontrib><title>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Poly­(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis­(4-hydroxyphenyl)­ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kD1PwzAYhC0EEqWwM_oHkOLPmIwhUEAqFAmYI3-8kRxSO3KSof-eFCqmO91wd3oQuqZkRQmjt9oOq7a3dsUsoaQoTtCCFpxlSkh5-u-FOkcXw9ASIjmhfIGadTfFBIOFMOL3FA3g2OBy50PsY7ffQcKv0fjOj3vsA76fum-sgzv4Nx2ijaHxARx-8AnsiEufcLVluNL9OCXAH1PfxzQOl-is0d0AV0ddoq_142f1nG22Ty9Vuck0zcWYgdCcglRyPk2MJhScsMoIYLl0LqcOnFHkrgCnhbEqZyzXUhkpmpwzRgxfopu_3hlH3cYphXmtpqQ-MKp_w5lRfWTEfwBy1lyo</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Correll, Helen</creator><creator>Leick, Noemi</creator><creator>Mow, Rachel E.</creator><creator>Russell-Parks, Glory A.</creator><creator>Pang, Simon H.</creator><creator>Gennett, Thomas</creator><creator>Braunecker, Wade A.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0001-9059-1681</orcidid><orcidid>https://orcid.org/0000-0003-2913-1648</orcidid><orcidid>https://orcid.org/0000-0003-0773-9580</orcidid></search><sort><creationdate>20220630</creationdate><title>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</title><author>Correll, Helen ; Leick, Noemi ; Mow, Rachel E. ; Russell-Parks, Glory A. ; Pang, Simon H. ; Gennett, Thomas ; Braunecker, Wade A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a164t-e4a31e5754550ba01ed4c7b4e265dd61dedb7089eda4bc76226a57b54f63220b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correll, Helen</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mow, Rachel E.</creatorcontrib><creatorcontrib>Russell-Parks, Glory A.</creatorcontrib><creatorcontrib>Pang, Simon H.</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Braunecker, Wade A.</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correll, Helen</au><au>Leick, Noemi</au><au>Mow, Rachel E.</au><au>Russell-Parks, Glory A.</au><au>Pang, Simon H.</au><au>Gennett, Thomas</au><au>Braunecker, Wade A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-06-30</date><risdate>2022</risdate><volume>126</volume><issue>25</issue><spage>10419</spage><epage>10428</epage><pages>10419-10428</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Poly­(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis­(4-hydroxyphenyl)­ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c01099</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0001-9059-1681</orcidid><orcidid>https://orcid.org/0000-0003-2913-1648</orcidid><orcidid>https://orcid.org/0000-0003-0773-9580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-06, Vol.126 (25), p.10419-10428
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_2c01099
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20Probe%20of%20Aminopolymer%20Mobility%20in%20Bulk%20and%20in%20Nanoconfined%20Direct%20Air%20CO2%20Capture%20Supports&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Correll,%20Helen&rft.date=2022-06-30&rft.volume=126&rft.issue=25&rft.spage=10419&rft.epage=10428&rft.pages=10419-10428&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c01099&rft_dat=%3Cacs%3Ef79375477%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a164t-e4a31e5754550ba01ed4c7b4e265dd61dedb7089eda4bc76226a57b54f63220b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true