Loading…
Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports
Poly(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, an...
Saved in:
Published in: | Journal of physical chemistry. C 2022-06, Vol.126 (25), p.10419-10428 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10428 |
container_issue | 25 |
container_start_page | 10419 |
container_title | Journal of physical chemistry. C |
container_volume | 126 |
creator | Correll, Helen Leick, Noemi Mow, Rachel E. Russell-Parks, Glory A. Pang, Simon H. Gennett, Thomas Braunecker, Wade A. |
description | Poly(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis(4-hydroxyphenyl)ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture. |
doi_str_mv | 10.1021/acs.jpcc.2c01099 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c01099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f79375477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a164t-e4a31e5754550ba01ed4c7b4e265dd61dedb7089eda4bc76226a57b54f63220b3</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqWwM_oHkOLPmIwhUEAqFAmYI3-8kRxSO3KSof-eFCqmO91wd3oQuqZkRQmjt9oOq7a3dsUsoaQoTtCCFpxlSkh5-u-FOkcXw9ASIjmhfIGadTfFBIOFMOL3FA3g2OBy50PsY7ffQcKv0fjOj3vsA76fum-sgzv4Nx2ijaHxARx-8AnsiEufcLVluNL9OCXAH1PfxzQOl-is0d0AV0ddoq_142f1nG22Ty9Vuck0zcWYgdCcglRyPk2MJhScsMoIYLl0LqcOnFHkrgCnhbEqZyzXUhkpmpwzRgxfopu_3hlH3cYphXmtpqQ-MKp_w5lRfWTEfwBy1lyo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Correll, Helen ; Leick, Noemi ; Mow, Rachel E. ; Russell-Parks, Glory A. ; Pang, Simon H. ; Gennett, Thomas ; Braunecker, Wade A.</creator><creatorcontrib>Correll, Helen ; Leick, Noemi ; Mow, Rachel E. ; Russell-Parks, Glory A. ; Pang, Simon H. ; Gennett, Thomas ; Braunecker, Wade A.</creatorcontrib><description>Poly(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis(4-hydroxyphenyl)ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c01099</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2022-06, Vol.126 (25), p.10419-10428</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2014-6264 ; 0000-0001-9059-1681 ; 0000-0003-2913-1648 ; 0000-0003-0773-9580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Correll, Helen</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mow, Rachel E.</creatorcontrib><creatorcontrib>Russell-Parks, Glory A.</creatorcontrib><creatorcontrib>Pang, Simon H.</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Braunecker, Wade A.</creatorcontrib><title>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Poly(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis(4-hydroxyphenyl)ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kD1PwzAYhC0EEqWwM_oHkOLPmIwhUEAqFAmYI3-8kRxSO3KSof-eFCqmO91wd3oQuqZkRQmjt9oOq7a3dsUsoaQoTtCCFpxlSkh5-u-FOkcXw9ASIjmhfIGadTfFBIOFMOL3FA3g2OBy50PsY7ffQcKv0fjOj3vsA76fum-sgzv4Nx2ijaHxARx-8AnsiEufcLVluNL9OCXAH1PfxzQOl-is0d0AV0ddoq_142f1nG22Ty9Vuck0zcWYgdCcglRyPk2MJhScsMoIYLl0LqcOnFHkrgCnhbEqZyzXUhkpmpwzRgxfopu_3hlH3cYphXmtpqQ-MKp_w5lRfWTEfwBy1lyo</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Correll, Helen</creator><creator>Leick, Noemi</creator><creator>Mow, Rachel E.</creator><creator>Russell-Parks, Glory A.</creator><creator>Pang, Simon H.</creator><creator>Gennett, Thomas</creator><creator>Braunecker, Wade A.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0001-9059-1681</orcidid><orcidid>https://orcid.org/0000-0003-2913-1648</orcidid><orcidid>https://orcid.org/0000-0003-0773-9580</orcidid></search><sort><creationdate>20220630</creationdate><title>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</title><author>Correll, Helen ; Leick, Noemi ; Mow, Rachel E. ; Russell-Parks, Glory A. ; Pang, Simon H. ; Gennett, Thomas ; Braunecker, Wade A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a164t-e4a31e5754550ba01ed4c7b4e265dd61dedb7089eda4bc76226a57b54f63220b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correll, Helen</creatorcontrib><creatorcontrib>Leick, Noemi</creatorcontrib><creatorcontrib>Mow, Rachel E.</creatorcontrib><creatorcontrib>Russell-Parks, Glory A.</creatorcontrib><creatorcontrib>Pang, Simon H.</creatorcontrib><creatorcontrib>Gennett, Thomas</creatorcontrib><creatorcontrib>Braunecker, Wade A.</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correll, Helen</au><au>Leick, Noemi</au><au>Mow, Rachel E.</au><au>Russell-Parks, Glory A.</au><au>Pang, Simon H.</au><au>Gennett, Thomas</au><au>Braunecker, Wade A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-06-30</date><risdate>2022</risdate><volume>126</volume><issue>25</issue><spage>10419</spage><epage>10428</epage><pages>10419-10428</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Poly(ethylenimine) (PEI) is widely recognized as an efficient carbon capture medium. When loaded onto mesoporous oxide supports, the polymer becomes particularly attractive for direct air capture (DAC) applications given the high surface area of the composites, the low volatility of the polymer, and the excellent cyclability of the system. As polymer segmental mobility is coupled with CO2 uptake and diffusion, understanding how that mobility is influenced by nanoconfinement will ultimately be critical to the development of more efficient DAC systems. Here, we discuss our development of a fluorescent probe molecule based on tetrakis(4-hydroxyphenyl)ethylene. As the fluorescence intensity of this molecule and the shape of the emission spectra are strongly dependent on the viscosity of the supporting medium, doping PEI-composites with this fluorescent probe can provide sensitive indication of polymer glass transition and/or melting temperatures across a wide range of temperatures (−100 to +100 °C). Herein, we demonstrate how this molecule can be used as a ratiometric probe to study bulk PEI dynamics and confinement effects in mesoporous silica as influenced by pore functionality, polymer fill fraction, and polymer architecture.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c01099</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2014-6264</orcidid><orcidid>https://orcid.org/0000-0001-9059-1681</orcidid><orcidid>https://orcid.org/0000-0003-2913-1648</orcidid><orcidid>https://orcid.org/0000-0003-0773-9580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2022-06, Vol.126 (25), p.10419-10428 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_2c01099 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials |
title | Fluorescent Probe of Aminopolymer Mobility in Bulk and in Nanoconfined Direct Air CO2 Capture Supports |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20Probe%20of%20Aminopolymer%20Mobility%20in%20Bulk%20and%20in%20Nanoconfined%20Direct%20Air%20CO2%20Capture%20Supports&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Correll,%20Helen&rft.date=2022-06-30&rft.volume=126&rft.issue=25&rft.spage=10419&rft.epage=10428&rft.pages=10419-10428&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c01099&rft_dat=%3Cacs%3Ef79375477%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a164t-e4a31e5754550ba01ed4c7b4e265dd61dedb7089eda4bc76226a57b54f63220b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |