Loading…
Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications
The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the...
Saved in:
Published in: | Journal of physical chemistry. C 2022-08, Vol.126 (31), p.13004-13014 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13014 |
container_issue | 31 |
container_start_page | 13004 |
container_title | Journal of physical chemistry. C |
container_volume | 126 |
creator | Lee, Hye-Jin Noor, Navid Gumeci, Cenk Dale, Nilesh Parrondo, Javier Higgins, Drew C. |
description | The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications. |
doi_str_mv | 10.1021/acs.jpcc.2c02731 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c02731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h49911043</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-8d3e2672c49702a3bf66af8573fe24c1c296fe7e5d7439c027f63d721fd425023</originalsourceid><addsrcrecordid>eNo9kMtOAjEYhRujiYjuXfYBGOhlZsosCRElgWBE1pPaC1MCbdN2or6PD-oMElf_OX9yzkk-AB4xGmNE8ISLOD54IcZEIMIovgIDXFGSsbworv91zm7BXYwHhAqKMB2An52VKsTErTR2D1Oj4PLkuUjQ6bNbu-Abd3T77xF8bXhUcJtCK1Ib1Ah2KbjmMcJF6CLG2T61thsCP01qjD3ryZuSrVASPgfuG2UV3HwZqeDcnbyLJqkItQtw23oVBO-2TerszPujEbwvjffgRvNjVA-XOwS7xdP7_CVbbZ6X89kq45iQlE0lVaRkROQVQ4TTD12WXE8LRrUiucCCVKVWTBWS5bTqMemSSkawljkpEKFDMPrr7WDWB9cG263VGNU94fr87AjXF8L0F7ojcvM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lee, Hye-Jin ; Noor, Navid ; Gumeci, Cenk ; Dale, Nilesh ; Parrondo, Javier ; Higgins, Drew C.</creator><creatorcontrib>Lee, Hye-Jin ; Noor, Navid ; Gumeci, Cenk ; Dale, Nilesh ; Parrondo, Javier ; Higgins, Drew C.</creatorcontrib><description>The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c02731</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2022-08, Vol.126 (31), p.13004-13014</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0585-2670 ; 0000-0002-0142-3406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Hye-Jin</creatorcontrib><creatorcontrib>Noor, Navid</creatorcontrib><creatorcontrib>Gumeci, Cenk</creatorcontrib><creatorcontrib>Dale, Nilesh</creatorcontrib><creatorcontrib>Parrondo, Javier</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><title>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtOAjEYhRujiYjuXfYBGOhlZsosCRElgWBE1pPaC1MCbdN2or6PD-oMElf_OX9yzkk-AB4xGmNE8ISLOD54IcZEIMIovgIDXFGSsbworv91zm7BXYwHhAqKMB2An52VKsTErTR2D1Oj4PLkuUjQ6bNbu-Abd3T77xF8bXhUcJtCK1Ib1Ah2KbjmMcJF6CLG2T61thsCP01qjD3ryZuSrVASPgfuG2UV3HwZqeDcnbyLJqkItQtw23oVBO-2TerszPujEbwvjffgRvNjVA-XOwS7xdP7_CVbbZ6X89kq45iQlE0lVaRkROQVQ4TTD12WXE8LRrUiucCCVKVWTBWS5bTqMemSSkawljkpEKFDMPrr7WDWB9cG263VGNU94fr87AjXF8L0F7ojcvM</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>Lee, Hye-Jin</creator><creator>Noor, Navid</creator><creator>Gumeci, Cenk</creator><creator>Dale, Nilesh</creator><creator>Parrondo, Javier</creator><creator>Higgins, Drew C.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000-0002-0142-3406</orcidid></search><sort><creationdate>20220811</creationdate><title>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</title><author>Lee, Hye-Jin ; Noor, Navid ; Gumeci, Cenk ; Dale, Nilesh ; Parrondo, Javier ; Higgins, Drew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-8d3e2672c49702a3bf66af8573fe24c1c296fe7e5d7439c027f63d721fd425023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hye-Jin</creatorcontrib><creatorcontrib>Noor, Navid</creatorcontrib><creatorcontrib>Gumeci, Cenk</creatorcontrib><creatorcontrib>Dale, Nilesh</creatorcontrib><creatorcontrib>Parrondo, Javier</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hye-Jin</au><au>Noor, Navid</au><au>Gumeci, Cenk</au><au>Dale, Nilesh</au><au>Parrondo, Javier</au><au>Higgins, Drew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-08-11</date><risdate>2022</risdate><volume>126</volume><issue>31</issue><spage>13004</spage><epage>13014</epage><pages>13004-13014</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c02731</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000-0002-0142-3406</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2022-08, Vol.126 (31), p.13004-13014 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_2c02731 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Energy Conversion and Storage |
title | Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Impact%20of%20the%20Morphology,%20Phase%20Structure,%20and%20Mass%20Fraction%20of%20MnO2%20within%20MnO2/Reduced%20Graphene%20Oxide%20Composites%20for%20Supercapacitor%20Applications&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lee,%20Hye-Jin&rft.date=2022-08-11&rft.volume=126&rft.issue=31&rft.spage=13004&rft.epage=13014&rft.pages=13004-13014&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c02731&rft_dat=%3Cacs%3Eh49911043%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a122t-8d3e2672c49702a3bf66af8573fe24c1c296fe7e5d7439c027f63d721fd425023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |