Loading…

Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications

The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2022-08, Vol.126 (31), p.13004-13014
Main Authors: Lee, Hye-Jin, Noor, Navid, Gumeci, Cenk, Dale, Nilesh, Parrondo, Javier, Higgins, Drew C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13014
container_issue 31
container_start_page 13004
container_title Journal of physical chemistry. C
container_volume 126
creator Lee, Hye-Jin
Noor, Navid
Gumeci, Cenk
Dale, Nilesh
Parrondo, Javier
Higgins, Drew C.
description The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications.
doi_str_mv 10.1021/acs.jpcc.2c02731
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c02731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h49911043</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-8d3e2672c49702a3bf66af8573fe24c1c296fe7e5d7439c027f63d721fd425023</originalsourceid><addsrcrecordid>eNo9kMtOAjEYhRujiYjuXfYBGOhlZsosCRElgWBE1pPaC1MCbdN2or6PD-oMElf_OX9yzkk-AB4xGmNE8ISLOD54IcZEIMIovgIDXFGSsbworv91zm7BXYwHhAqKMB2An52VKsTErTR2D1Oj4PLkuUjQ6bNbu-Abd3T77xF8bXhUcJtCK1Ib1Ah2KbjmMcJF6CLG2T61thsCP01qjD3ryZuSrVASPgfuG2UV3HwZqeDcnbyLJqkItQtw23oVBO-2TerszPujEbwvjffgRvNjVA-XOwS7xdP7_CVbbZ6X89kq45iQlE0lVaRkROQVQ4TTD12WXE8LRrUiucCCVKVWTBWS5bTqMemSSkawljkpEKFDMPrr7WDWB9cG263VGNU94fr87AjXF8L0F7ojcvM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lee, Hye-Jin ; Noor, Navid ; Gumeci, Cenk ; Dale, Nilesh ; Parrondo, Javier ; Higgins, Drew C.</creator><creatorcontrib>Lee, Hye-Jin ; Noor, Navid ; Gumeci, Cenk ; Dale, Nilesh ; Parrondo, Javier ; Higgins, Drew C.</creatorcontrib><description>The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c02731</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2022-08, Vol.126 (31), p.13004-13014</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0585-2670 ; 0000-0002-0142-3406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Hye-Jin</creatorcontrib><creatorcontrib>Noor, Navid</creatorcontrib><creatorcontrib>Gumeci, Cenk</creatorcontrib><creatorcontrib>Dale, Nilesh</creatorcontrib><creatorcontrib>Parrondo, Javier</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><title>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtOAjEYhRujiYjuXfYBGOhlZsosCRElgWBE1pPaC1MCbdN2or6PD-oMElf_OX9yzkk-AB4xGmNE8ISLOD54IcZEIMIovgIDXFGSsbworv91zm7BXYwHhAqKMB2An52VKsTErTR2D1Oj4PLkuUjQ6bNbu-Abd3T77xF8bXhUcJtCK1Ib1Ah2KbjmMcJF6CLG2T61thsCP01qjD3ryZuSrVASPgfuG2UV3HwZqeDcnbyLJqkItQtw23oVBO-2TerszPujEbwvjffgRvNjVA-XOwS7xdP7_CVbbZ6X89kq45iQlE0lVaRkROQVQ4TTD12WXE8LRrUiucCCVKVWTBWS5bTqMemSSkawljkpEKFDMPrr7WDWB9cG263VGNU94fr87AjXF8L0F7ojcvM</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>Lee, Hye-Jin</creator><creator>Noor, Navid</creator><creator>Gumeci, Cenk</creator><creator>Dale, Nilesh</creator><creator>Parrondo, Javier</creator><creator>Higgins, Drew C.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000-0002-0142-3406</orcidid></search><sort><creationdate>20220811</creationdate><title>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</title><author>Lee, Hye-Jin ; Noor, Navid ; Gumeci, Cenk ; Dale, Nilesh ; Parrondo, Javier ; Higgins, Drew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-8d3e2672c49702a3bf66af8573fe24c1c296fe7e5d7439c027f63d721fd425023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hye-Jin</creatorcontrib><creatorcontrib>Noor, Navid</creatorcontrib><creatorcontrib>Gumeci, Cenk</creatorcontrib><creatorcontrib>Dale, Nilesh</creatorcontrib><creatorcontrib>Parrondo, Javier</creatorcontrib><creatorcontrib>Higgins, Drew C.</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hye-Jin</au><au>Noor, Navid</au><au>Gumeci, Cenk</au><au>Dale, Nilesh</au><au>Parrondo, Javier</au><au>Higgins, Drew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-08-11</date><risdate>2022</risdate><volume>126</volume><issue>31</issue><spage>13004</spage><epage>13014</epage><pages>13004-13014</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The electrochemical supercapacitor performance of MnO2 is significantly influenced by the phase structure due to the various structural features of the different MnO2 polymorphs that include tunnels or layered structures that can facilitate ion transport and intercalation. However, the effect of the crystal structure of MnO2 within MnO2/carbon composites has not been fully explored or understood. Herein, we have synthesized different crystal structures of MnO2 (α- and β-MnO2) within MnO2/reduced graphene oxide (rGO) composites by a hydrothermal process using various amounts of (NH4)2SO4, followed by systematic structural characterization and electrochemical capacitance measurements. An excellent capacitance performance of 403 F g–1 was observed in α-MnO2/sulfur and nitrogen codoped reduced graphene oxide (S,N-rGO) composites because of the interconnection between the conductive porous 3D architectures of S,N-rGO and the α-MnO2 nanorods. This work highlights how the morphology, phase structure, and mass loading of MnO2 within MnO2/rGO composites directly influence the capacitance performance and rate capabilities, which provides insight into the design of MnO2-based composite materials for supercapacitor applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c02731</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0585-2670</orcidid><orcidid>https://orcid.org/0000-0002-0142-3406</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-08, Vol.126 (31), p.13004-13014
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_2c02731
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Energy Conversion and Storage
title Understanding the Impact of the Morphology, Phase Structure, and Mass Fraction of MnO2 within MnO2/Reduced Graphene Oxide Composites for Supercapacitor Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Impact%20of%20the%20Morphology,%20Phase%20Structure,%20and%20Mass%20Fraction%20of%20MnO2%20within%20MnO2/Reduced%20Graphene%20Oxide%20Composites%20for%20Supercapacitor%20Applications&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lee,%20Hye-Jin&rft.date=2022-08-11&rft.volume=126&rft.issue=31&rft.spage=13004&rft.epage=13014&rft.pages=13004-13014&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c02731&rft_dat=%3Cacs%3Eh49911043%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a122t-8d3e2672c49702a3bf66af8573fe24c1c296fe7e5d7439c027f63d721fd425023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true