Loading…
Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence
Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optica...
Saved in:
Published in: | Journal of physical chemistry. C 2022-08, Vol.126 (32), p.13821-13829 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13829 |
container_issue | 32 |
container_start_page | 13821 |
container_title | Journal of physical chemistry. C |
container_volume | 126 |
creator | Ambardar, Sharad N. Hrim, Hana Tang, Chenwei Jia, Shuai Chen, Weibing Lou, Jun Voronine, Dmitri V. |
description | Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices. |
doi_str_mv | 10.1021/acs.jpcc.2c03728 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c03728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d24540807</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-90ea96afdec0f9b2f6dc7ad37549edefed206acb2d0eb42ff917dfd24f73f5db3</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMouK7ePeYH2DUfbWOPUt1V2NWCH9eSJm9satqUpov031t18TTDDMzAg9AlJStKGL2WKqyaXqkVU4QLdnOEFjTjLBJxkhz_-1icorMQGkISTihfoM9i8JXtPnBeQ2uVdPhd9n7Ad9D7YEfrO7wZ_NdY4x2oWnY2tNgbXHg3qWEKo3TOdoB3_gUYrib8BHKI1hacxkXtR-_27dwHBZ2Cc3RipAtwcdAlelvfv-YP0fZ585jfbiNJGRujjIDMUmk0KGKyiplUKyE1F0mcgQYDmpFUqoppAlXMjMmo0Eaz2AhuEl3xJbr6252ZlI3fD938VlJS_oAqf8MZVHkAxb8BsUhhRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ambardar, Sharad ; N. Hrim, Hana ; Tang, Chenwei ; Jia, Shuai ; Chen, Weibing ; Lou, Jun ; Voronine, Dmitri V.</creator><creatorcontrib>Ambardar, Sharad ; N. Hrim, Hana ; Tang, Chenwei ; Jia, Shuai ; Chen, Weibing ; Lou, Jun ; Voronine, Dmitri V.</creatorcontrib><description>Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c03728</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2022-08, Vol.126 (32), p.13821-13829</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8841-7657 ; 0000-0002-4351-9561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ambardar, Sharad</creatorcontrib><creatorcontrib>N. Hrim, Hana</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Jia, Shuai</creatorcontrib><creatorcontrib>Chen, Weibing</creatorcontrib><creatorcontrib>Lou, Jun</creatorcontrib><creatorcontrib>Voronine, Dmitri V.</creatorcontrib><title>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1LxDAYhIMouK7ePeYH2DUfbWOPUt1V2NWCH9eSJm9satqUpov031t18TTDDMzAg9AlJStKGL2WKqyaXqkVU4QLdnOEFjTjLBJxkhz_-1icorMQGkISTihfoM9i8JXtPnBeQ2uVdPhd9n7Ad9D7YEfrO7wZ_NdY4x2oWnY2tNgbXHg3qWEKo3TOdoB3_gUYrib8BHKI1hacxkXtR-_27dwHBZ2Cc3RipAtwcdAlelvfv-YP0fZ585jfbiNJGRujjIDMUmk0KGKyiplUKyE1F0mcgQYDmpFUqoppAlXMjMmo0Eaz2AhuEl3xJbr6252ZlI3fD938VlJS_oAqf8MZVHkAxb8BsUhhRw</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Ambardar, Sharad</creator><creator>N. Hrim, Hana</creator><creator>Tang, Chenwei</creator><creator>Jia, Shuai</creator><creator>Chen, Weibing</creator><creator>Lou, Jun</creator><creator>Voronine, Dmitri V.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8841-7657</orcidid><orcidid>https://orcid.org/0000-0002-4351-9561</orcidid></search><sort><creationdate>20220818</creationdate><title>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</title><author>Ambardar, Sharad ; N. Hrim, Hana ; Tang, Chenwei ; Jia, Shuai ; Chen, Weibing ; Lou, Jun ; Voronine, Dmitri V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-90ea96afdec0f9b2f6dc7ad37549edefed206acb2d0eb42ff917dfd24f73f5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambardar, Sharad</creatorcontrib><creatorcontrib>N. Hrim, Hana</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Jia, Shuai</creatorcontrib><creatorcontrib>Chen, Weibing</creatorcontrib><creatorcontrib>Lou, Jun</creatorcontrib><creatorcontrib>Voronine, Dmitri V.</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambardar, Sharad</au><au>N. Hrim, Hana</au><au>Tang, Chenwei</au><au>Jia, Shuai</au><au>Chen, Weibing</au><au>Lou, Jun</au><au>Voronine, Dmitri V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-08-18</date><risdate>2022</risdate><volume>126</volume><issue>32</issue><spage>13821</spage><epage>13829</epage><pages>13821-13829</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c03728</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8841-7657</orcidid><orcidid>https://orcid.org/0000-0002-4351-9561</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2022-08, Vol.126 (32), p.13821-13829 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_2c03728 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials |
title | Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Chemical%20Vapor%20Deposition%20Growth%20Mechanism%20of%20Polycrystalline%20MoSe2%20by%20Near-Field%20Photoluminescence&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ambardar,%20Sharad&rft.date=2022-08-18&rft.volume=126&rft.issue=32&rft.spage=13821&rft.epage=13829&rft.pages=13821-13829&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c03728&rft_dat=%3Cacs%3Ed24540807%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a122t-90ea96afdec0f9b2f6dc7ad37549edefed206acb2d0eb42ff917dfd24f73f5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |