Loading…

Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence

Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optica...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2022-08, Vol.126 (32), p.13821-13829
Main Authors: Ambardar, Sharad, N. Hrim, Hana, Tang, Chenwei, Jia, Shuai, Chen, Weibing, Lou, Jun, Voronine, Dmitri V.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13829
container_issue 32
container_start_page 13821
container_title Journal of physical chemistry. C
container_volume 126
creator Ambardar, Sharad
N. Hrim, Hana
Tang, Chenwei
Jia, Shuai
Chen, Weibing
Lou, Jun
Voronine, Dmitri V.
description Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices.
doi_str_mv 10.1021/acs.jpcc.2c03728
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c03728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d24540807</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-90ea96afdec0f9b2f6dc7ad37549edefed206acb2d0eb42ff917dfd24f73f5db3</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMouK7ePeYH2DUfbWOPUt1V2NWCH9eSJm9satqUpov031t18TTDDMzAg9AlJStKGL2WKqyaXqkVU4QLdnOEFjTjLBJxkhz_-1icorMQGkISTihfoM9i8JXtPnBeQ2uVdPhd9n7Ad9D7YEfrO7wZ_NdY4x2oWnY2tNgbXHg3qWEKo3TOdoB3_gUYrib8BHKI1hacxkXtR-_27dwHBZ2Cc3RipAtwcdAlelvfv-YP0fZ585jfbiNJGRujjIDMUmk0KGKyiplUKyE1F0mcgQYDmpFUqoppAlXMjMmo0Eaz2AhuEl3xJbr6252ZlI3fD938VlJS_oAqf8MZVHkAxb8BsUhhRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ambardar, Sharad ; N. Hrim, Hana ; Tang, Chenwei ; Jia, Shuai ; Chen, Weibing ; Lou, Jun ; Voronine, Dmitri V.</creator><creatorcontrib>Ambardar, Sharad ; N. Hrim, Hana ; Tang, Chenwei ; Jia, Shuai ; Chen, Weibing ; Lou, Jun ; Voronine, Dmitri V.</creatorcontrib><description>Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c03728</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2022-08, Vol.126 (32), p.13821-13829</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8841-7657 ; 0000-0002-4351-9561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ambardar, Sharad</creatorcontrib><creatorcontrib>N. Hrim, Hana</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Jia, Shuai</creatorcontrib><creatorcontrib>Chen, Weibing</creatorcontrib><creatorcontrib>Lou, Jun</creatorcontrib><creatorcontrib>Voronine, Dmitri V.</creatorcontrib><title>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1LxDAYhIMouK7ePeYH2DUfbWOPUt1V2NWCH9eSJm9satqUpov031t18TTDDMzAg9AlJStKGL2WKqyaXqkVU4QLdnOEFjTjLBJxkhz_-1icorMQGkISTihfoM9i8JXtPnBeQ2uVdPhd9n7Ad9D7YEfrO7wZ_NdY4x2oWnY2tNgbXHg3qWEKo3TOdoB3_gUYrib8BHKI1hacxkXtR-_27dwHBZ2Cc3RipAtwcdAlelvfv-YP0fZ585jfbiNJGRujjIDMUmk0KGKyiplUKyE1F0mcgQYDmpFUqoppAlXMjMmo0Eaz2AhuEl3xJbr6252ZlI3fD938VlJS_oAqf8MZVHkAxb8BsUhhRw</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Ambardar, Sharad</creator><creator>N. Hrim, Hana</creator><creator>Tang, Chenwei</creator><creator>Jia, Shuai</creator><creator>Chen, Weibing</creator><creator>Lou, Jun</creator><creator>Voronine, Dmitri V.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8841-7657</orcidid><orcidid>https://orcid.org/0000-0002-4351-9561</orcidid></search><sort><creationdate>20220818</creationdate><title>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</title><author>Ambardar, Sharad ; N. Hrim, Hana ; Tang, Chenwei ; Jia, Shuai ; Chen, Weibing ; Lou, Jun ; Voronine, Dmitri V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-90ea96afdec0f9b2f6dc7ad37549edefed206acb2d0eb42ff917dfd24f73f5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambardar, Sharad</creatorcontrib><creatorcontrib>N. Hrim, Hana</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Jia, Shuai</creatorcontrib><creatorcontrib>Chen, Weibing</creatorcontrib><creatorcontrib>Lou, Jun</creatorcontrib><creatorcontrib>Voronine, Dmitri V.</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambardar, Sharad</au><au>N. Hrim, Hana</au><au>Tang, Chenwei</au><au>Jia, Shuai</au><au>Chen, Weibing</au><au>Lou, Jun</au><au>Voronine, Dmitri V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-08-18</date><risdate>2022</risdate><volume>126</volume><issue>32</issue><spage>13821</spage><epage>13829</epage><pages>13821-13829</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Chemical vapor deposition (CVD) growth of atomically thin 2D materials, such as transition metal dichalcogenides (TMDs), is a complex process that has not been completely understood. Large-scale growth of monolayer TMDs often leads to polycrystalline films with heterogeneous morphological and optical properties. Previous optical studies of 2D materials by far-field photoluminescence (PL) provided insights into CVD growth mechanisms of simple crystals, which were, however, limited in spatial resolution due to the diffraction limit. Here we performed correlated morphological and tip-enhanced PL (TEPL) imaging of CVD-grown polycrystalline monolayer molybdenum diselenide (MoSe2) flakes with heterogeneous optical response. We observed nanoscale spatial variations of the optical band gap due to growth-induced thermal strain, revealing the different roles of aligned particles (APs) at crystal edges and grain boundaries (GBs) in thermal strain relaxation. TEPL imaging showed the strain-free near-field PL at GBs, revealing the direct connection between MoSe2 and APs. These results may be used to improve nanoscale bandgap engineering techniques and CVD growth scalability, leading to optimized crystal growth and high performance optoelectronic nanodevices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c03728</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8841-7657</orcidid><orcidid>https://orcid.org/0000-0002-4351-9561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-08, Vol.126 (32), p.13821-13829
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_2c03728
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe2 by Near-Field Photoluminescence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Chemical%20Vapor%20Deposition%20Growth%20Mechanism%20of%20Polycrystalline%20MoSe2%20by%20Near-Field%20Photoluminescence&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ambardar,%20Sharad&rft.date=2022-08-18&rft.volume=126&rft.issue=32&rft.spage=13821&rft.epage=13829&rft.pages=13821-13829&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c03728&rft_dat=%3Cacs%3Ed24540807%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a122t-90ea96afdec0f9b2f6dc7ad37549edefed206acb2d0eb42ff917dfd24f73f5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true