Loading…

Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations

Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2023-12, Vol.127 (49), p.23760-23767
Main Authors: Eckstein, Klaus H., Hertel, Tobias
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 23767
container_issue 49
container_start_page 23760
container_title Journal of physical chemistry. C
container_volume 127
creator Eckstein, Klaus H.
Hertel, Tobias
description Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping.
doi_str_mv 10.1021/acs.jpcc.3c06007
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_3c06007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a873471245</sourcerecordid><originalsourceid>FETCH-acs_journals_10_1021_acs_jpcc_3c060073</originalsourceid><addsrcrecordid>eNqVjztOAzEURa0IJMKnp3wLIBM7zjCiHoLSkCbpLc8bG3ni-EX-7IHFsSgMiuip7tXVKe5h7FHwRvCVWGpMzXRGbCTyZ867GZuLF7ladOu2vfrr6-6G3aY0cd5KLuScHTfeYI4UHMI-x4K5RAM6jLBH7V34ALLQU_F0GuDV2AoncAF6HQcKsNOBchlMAhvpBO80OuvMCNvy9YlH4yvnsXidHYV0z66t9sk8XPKOPb1tDv12Ub-riUoMdVWCqx8h9TtWIXURkv_EvwGo-lZ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Eckstein, Klaus H. ; Hertel, Tobias</creator><creatorcontrib>Eckstein, Klaus H. ; Hertel, Tobias</creatorcontrib><description>Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c06007</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2023-12, Vol.127 (49), p.23760-23767</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7907-4341 ; 0000-0001-9595-4621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eckstein, Klaus H.</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><title>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVjztOAzEURa0IJMKnp3wLIBM7zjCiHoLSkCbpLc8bG3ni-EX-7IHFsSgMiuip7tXVKe5h7FHwRvCVWGpMzXRGbCTyZ867GZuLF7ladOu2vfrr6-6G3aY0cd5KLuScHTfeYI4UHMI-x4K5RAM6jLBH7V34ALLQU_F0GuDV2AoncAF6HQcKsNOBchlMAhvpBO80OuvMCNvy9YlH4yvnsXidHYV0z66t9sk8XPKOPb1tDv12Ub-riUoMdVWCqx8h9TtWIXURkv_EvwGo-lZ4</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Eckstein, Klaus H.</creator><creator>Hertel, Tobias</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0001-9595-4621</orcidid></search><sort><creationdate>20231214</creationdate><title>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</title><author>Eckstein, Klaus H. ; Hertel, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-acs_journals_10_1021_acs_jpcc_3c060073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckstein, Klaus H.</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckstein, Klaus H.</au><au>Hertel, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>127</volume><issue>49</issue><spage>23760</spage><epage>23767</epage><pages>23760-23767</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c06007</doi><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0001-9595-4621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-12, Vol.127 (49), p.23760-23767
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_3c06007
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Structure%20and%20Scaling%20of%20Coulomb%20Defects%20in%20Carbon%20Nanotubes%20from%20Modified%20Hu%CC%88ckel%20Calculations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Eckstein,%20Klaus%20H.&rft.date=2023-12-14&rft.volume=127&rft.issue=49&rft.spage=23760&rft.epage=23767&rft.pages=23760-23767&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c06007&rft_dat=%3Cacs%3Ea873471245%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-acs_journals_10_1021_acs_jpcc_3c060073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true