Loading…
Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations
Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling t...
Saved in:
Published in: | Journal of physical chemistry. C 2023-12, Vol.127 (49), p.23760-23767 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 23767 |
container_issue | 49 |
container_start_page | 23760 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Eckstein, Klaus H. Hertel, Tobias |
description | Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping. |
doi_str_mv | 10.1021/acs.jpcc.3c06007 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_3c06007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a873471245</sourcerecordid><originalsourceid>FETCH-acs_journals_10_1021_acs_jpcc_3c060073</originalsourceid><addsrcrecordid>eNqVjztOAzEURa0IJMKnp3wLIBM7zjCiHoLSkCbpLc8bG3ni-EX-7IHFsSgMiuip7tXVKe5h7FHwRvCVWGpMzXRGbCTyZ867GZuLF7ladOu2vfrr6-6G3aY0cd5KLuScHTfeYI4UHMI-x4K5RAM6jLBH7V34ALLQU_F0GuDV2AoncAF6HQcKsNOBchlMAhvpBO80OuvMCNvy9YlH4yvnsXidHYV0z66t9sk8XPKOPb1tDv12Ub-riUoMdVWCqx8h9TtWIXURkv_EvwGo-lZ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Eckstein, Klaus H. ; Hertel, Tobias</creator><creatorcontrib>Eckstein, Klaus H. ; Hertel, Tobias</creatorcontrib><description>Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c06007</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2023-12, Vol.127 (49), p.23760-23767</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7907-4341 ; 0000-0001-9595-4621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eckstein, Klaus H.</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><title>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVjztOAzEURa0IJMKnp3wLIBM7zjCiHoLSkCbpLc8bG3ni-EX-7IHFsSgMiuip7tXVKe5h7FHwRvCVWGpMzXRGbCTyZ867GZuLF7ladOu2vfrr6-6G3aY0cd5KLuScHTfeYI4UHMI-x4K5RAM6jLBH7V34ALLQU_F0GuDV2AoncAF6HQcKsNOBchlMAhvpBO80OuvMCNvy9YlH4yvnsXidHYV0z66t9sk8XPKOPb1tDv12Ub-riUoMdVWCqx8h9TtWIXURkv_EvwGo-lZ4</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Eckstein, Klaus H.</creator><creator>Hertel, Tobias</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0001-9595-4621</orcidid></search><sort><creationdate>20231214</creationdate><title>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</title><author>Eckstein, Klaus H. ; Hertel, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-acs_journals_10_1021_acs_jpcc_3c060073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckstein, Klaus H.</creatorcontrib><creatorcontrib>Hertel, Tobias</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckstein, Klaus H.</au><au>Hertel, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>127</volume><issue>49</issue><spage>23760</spage><epage>23767</epage><pages>23760-23767</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Controlled doping and understanding its underlying microscopic mechanisms are crucial for the advancement of nanoscale electronic technologies, especially in semiconducting single-wall carbon nanotubes (s-SWNTs), where adsorbed counterions are known to govern redox-doping levels. However, modeling the associated “Coulomb defects” at low doping levels is challenging due to the need for large-scale simulations. Here, modified Hückel calculations on 120 nm long s-SWNTs with adsorbed Cl– ions are used to study the scaling properties of shallow Coulomb defect states at the valence band edge and quantum well (QW) states in the conduction band. Interestingly, the QW states may underlie the observed exciton band shifts of inhomogeneously doped semiconductors. Using a variational approach, the binding energies of Coulomb defects are found to scale with counterion distance, effective band mass, relative permittivity, and counterion charge as d α − 2 m α − 1 ϵ r − α | z j | α , where α is an empirical parameter, deepening our understanding of s-SWNT doping.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c06007</doi><orcidid>https://orcid.org/0000-0001-7907-4341</orcidid><orcidid>https://orcid.org/0000-0001-9595-4621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-12, Vol.127 (49), p.23760-23767 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_3c06007 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials |
title | Electronic Structure and Scaling of Coulomb Defects in Carbon Nanotubes from Modified Hückel Calculations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Structure%20and%20Scaling%20of%20Coulomb%20Defects%20in%20Carbon%20Nanotubes%20from%20Modified%20Hu%CC%88ckel%20Calculations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Eckstein,%20Klaus%20H.&rft.date=2023-12-14&rft.volume=127&rft.issue=49&rft.spage=23760&rft.epage=23767&rft.pages=23760-23767&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c06007&rft_dat=%3Cacs%3Ea873471245%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-acs_journals_10_1021_acs_jpcc_3c060073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |