Loading…

Nature of Cu Interstitials in Al2O3 and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices

Resistive random access memory (RRAM) is a prime candidate to replace Flash memory. Of the two classes of RRAM, conductive bridge RAM (CBRAM) is favored over that based on filaments of oxygen vacancies because of its larger on/off resistance ratio. The nature of the filament in Cu/Al2O3-based CBRAM...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2016-07, Vol.120 (27), p.14474-14483
Main Authors: Dawson, J. A, Robertson, J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14483
container_issue 27
container_start_page 14474
container_title Journal of physical chemistry. C
container_volume 120
creator Dawson, J. A
Robertson, J
description Resistive random access memory (RRAM) is a prime candidate to replace Flash memory. Of the two classes of RRAM, conductive bridge RAM (CBRAM) is favored over that based on filaments of oxygen vacancies because of its larger on/off resistance ratio. The nature of the filament in Cu/Al2O3-based CBRAM is analyzed using density functional theory. The defect and binding energies of Cu interstitials and clusters in Al2O3 are calculated. The binding energy per Cu interstitial is shown to significantly increase with increasing Cu coordination, whereas the binding per oxygen vacancy only slightly increases with vacancy concentration. This explains why metal filaments in CBRAM devices tend to be denser than oxygen vacancy filaments. Using three different filament models, we discover that the strong binding between Cu interstitials drives filament formation, resulting in Al ions being driven out of the Cu-rich environment. This leads to the formation of densely packed metallic Cu filaments with bonding similar to Cu metal, as confirmed by electronic structure calculations.
doi_str_mv 10.1021/acs.jpcc.6b02728
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_6b02728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h11996666</sourcerecordid><originalsourceid>FETCH-LOGICAL-a271t-d39ccc965dc768f4f4c26b7e93f9a4fbe1e23f9b3c0bcefc4140119875c815353</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw57g_gBQ_8jyWQKFSoRKCc-RsbHCV2FXsVOLYf05aKk47O9LMSB8ht4zOGOXsXqKfbbaIs7SmPOP5GZmwQvAoi5Pk_F_H2SW58n5DaSIoExOyf5Nh6BU4DeUASxtU74MJRrYejIV5y9cCpG0gfCtYdtvWoAzGWQ_a9bAwreyUDbBwfXf0D6HS2WbAYHYKHnrTfCl4HxtcB3NE5T28qs71P_Codmb8r8mFHtfUzelOyefi6aN8iVbr52U5X0WSZyxEjSgQsUiTBrM017GOkad1pgqhCxnrWjHFR1kLpDUqjTGLKWNFniWYs0QkYkru_npHUtXGDb0d1ypGqwO-6miO-KoTPvEL6Y1mkw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nature of Cu Interstitials in Al2O3 and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dawson, J. A ; Robertson, J</creator><creatorcontrib>Dawson, J. A ; Robertson, J</creatorcontrib><description>Resistive random access memory (RRAM) is a prime candidate to replace Flash memory. Of the two classes of RRAM, conductive bridge RAM (CBRAM) is favored over that based on filaments of oxygen vacancies because of its larger on/off resistance ratio. The nature of the filament in Cu/Al2O3-based CBRAM is analyzed using density functional theory. The defect and binding energies of Cu interstitials and clusters in Al2O3 are calculated. The binding energy per Cu interstitial is shown to significantly increase with increasing Cu coordination, whereas the binding per oxygen vacancy only slightly increases with vacancy concentration. This explains why metal filaments in CBRAM devices tend to be denser than oxygen vacancy filaments. Using three different filament models, we discover that the strong binding between Cu interstitials drives filament formation, resulting in Al ions being driven out of the Cu-rich environment. This leads to the formation of densely packed metallic Cu filaments with bonding similar to Cu metal, as confirmed by electronic structure calculations.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b02728</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-07, Vol.120 (27), p.14474-14483</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dawson, J. A</creatorcontrib><creatorcontrib>Robertson, J</creatorcontrib><title>Nature of Cu Interstitials in Al2O3 and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Resistive random access memory (RRAM) is a prime candidate to replace Flash memory. Of the two classes of RRAM, conductive bridge RAM (CBRAM) is favored over that based on filaments of oxygen vacancies because of its larger on/off resistance ratio. The nature of the filament in Cu/Al2O3-based CBRAM is analyzed using density functional theory. The defect and binding energies of Cu interstitials and clusters in Al2O3 are calculated. The binding energy per Cu interstitial is shown to significantly increase with increasing Cu coordination, whereas the binding per oxygen vacancy only slightly increases with vacancy concentration. This explains why metal filaments in CBRAM devices tend to be denser than oxygen vacancy filaments. Using three different filament models, we discover that the strong binding between Cu interstitials drives filament formation, resulting in Al ions being driven out of the Cu-rich environment. This leads to the formation of densely packed metallic Cu filaments with bonding similar to Cu metal, as confirmed by electronic structure calculations.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtPwzAQhC0EEqVw57g_gBQ_8jyWQKFSoRKCc-RsbHCV2FXsVOLYf05aKk47O9LMSB8ht4zOGOXsXqKfbbaIs7SmPOP5GZmwQvAoi5Pk_F_H2SW58n5DaSIoExOyf5Nh6BU4DeUASxtU74MJRrYejIV5y9cCpG0gfCtYdtvWoAzGWQ_a9bAwreyUDbBwfXf0D6HS2WbAYHYKHnrTfCl4HxtcB3NE5T28qs71P_Codmb8r8mFHtfUzelOyefi6aN8iVbr52U5X0WSZyxEjSgQsUiTBrM017GOkad1pgqhCxnrWjHFR1kLpDUqjTGLKWNFniWYs0QkYkru_npHUtXGDb0d1ypGqwO-6miO-KoTPvEL6Y1mkw</recordid><startdate>20160714</startdate><enddate>20160714</enddate><creator>Dawson, J. A</creator><creator>Robertson, J</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20160714</creationdate><title>Nature of Cu Interstitials in Al2O3 and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices</title><author>Dawson, J. A ; Robertson, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a271t-d39ccc965dc768f4f4c26b7e93f9a4fbe1e23f9b3c0bcefc4140119875c815353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, J. A</creatorcontrib><creatorcontrib>Robertson, J</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, J. A</au><au>Robertson, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nature of Cu Interstitials in Al2O3 and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-07-14</date><risdate>2016</risdate><volume>120</volume><issue>27</issue><spage>14474</spage><epage>14483</epage><pages>14474-14483</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Resistive random access memory (RRAM) is a prime candidate to replace Flash memory. Of the two classes of RRAM, conductive bridge RAM (CBRAM) is favored over that based on filaments of oxygen vacancies because of its larger on/off resistance ratio. The nature of the filament in Cu/Al2O3-based CBRAM is analyzed using density functional theory. The defect and binding energies of Cu interstitials and clusters in Al2O3 are calculated. The binding energy per Cu interstitial is shown to significantly increase with increasing Cu coordination, whereas the binding per oxygen vacancy only slightly increases with vacancy concentration. This explains why metal filaments in CBRAM devices tend to be denser than oxygen vacancy filaments. Using three different filament models, we discover that the strong binding between Cu interstitials drives filament formation, resulting in Al ions being driven out of the Cu-rich environment. This leads to the formation of densely packed metallic Cu filaments with bonding similar to Cu metal, as confirmed by electronic structure calculations.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b02728</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-07, Vol.120 (27), p.14474-14483
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_6b02728
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Nature of Cu Interstitials in Al2O3 and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nature%20of%20Cu%20Interstitials%20in%20Al2O3%20and%20the%20Implications%20for%20Filament%20Formation%20in%20Conductive%20Bridge%20Random%20Access%20Memory%20Devices&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Dawson,%20J.%20A&rft.date=2016-07-14&rft.volume=120&rft.issue=27&rft.spage=14474&rft.epage=14483&rft.pages=14474-14483&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b02728&rft_dat=%3Cacs%3Eh11996666%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a271t-d39ccc965dc768f4f4c26b7e93f9a4fbe1e23f9b3c0bcefc4140119875c815353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true