Loading…

Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO2(110)

We study the electrochemical interface between rutile IrO2(110) and water to investigate how the inclusion of an explicit solvent influences the stabilities of adsorbed intermediates in the oxygen evolution reaction. Solvent is modeled by explicit nondissociated water molecules, and their structure...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2017-06, Vol.121 (21), p.11455-11463
Main Authors: Gauthier, Joseph A, Dickens, Colin F, Chen, Leanne D, Doyle, Andrew D, Nørskov, Jens K
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 11463
container_issue 21
container_start_page 11455
container_title Journal of physical chemistry. C
container_volume 121
creator Gauthier, Joseph A
Dickens, Colin F
Chen, Leanne D
Doyle, Andrew D
Nørskov, Jens K
description We study the electrochemical interface between rutile IrO2(110) and water to investigate how the inclusion of an explicit solvent influences the stabilities of adsorbed intermediates in the oxygen evolution reaction. Solvent is modeled by explicit nondissociated water molecules, and their structure is determined by a global optimization method. We find that the inclusion of an explicit solvent can significantly affect the geometry of adsorbed intermediates, changing from an interaction with the surface to an interaction with the water bilayer. These water structures consist of stacked octagonal sheets in an ordered network. Solvent stabilization is pronounced for adsorbed *OH and *OOH, which are capable of donating hydrogen bonds. We find little to no change in adsorbate binding energy as the number of layers of solvent is increased from 1 to 3, suggesting a single water bilayer is sufficient to describe the system. With either *O or *OH coadsorbates, the energetics of the reaction pathway are relatively unchanged with the inclusion of explicit solvent.
doi_str_mv 10.1021/acs.jpcc.7b02383
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_7b02383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b626002620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-de0a09cf9eb4889ee3825dca5e3cd4b5d46eff4a44223c9d642910db7a7facc83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvHnNUMHH2q8keJbRaKAT8OIfJ7K40hEayabH_vWssnubNG3iP-TF2yyHjIPgjUsjaL6Isb0DIQp6xGTdSpLnS-vxfq_ySXYXQAmgJXM7Y6q3vDjhu-12y9N7RGBLfD0n1ffx00Tr03X46vjqkSZQ4YncM25DEZT1U4o5zuL9mFx674G5Oc84-Vsv38iXdVM_r8mmTojB6TK0DBEPeuEYVhXFOFkJbQu0kWdVoqxbOe4VKCSHJ2IUShoNtcsw9EhVyzh7-cuO7ddvvh11sqznUvwzqyYwM6hMD-QPmp1Fj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO2(110)</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gauthier, Joseph A ; Dickens, Colin F ; Chen, Leanne D ; Doyle, Andrew D ; Nørskov, Jens K</creator><creatorcontrib>Gauthier, Joseph A ; Dickens, Colin F ; Chen, Leanne D ; Doyle, Andrew D ; Nørskov, Jens K</creatorcontrib><description>We study the electrochemical interface between rutile IrO2(110) and water to investigate how the inclusion of an explicit solvent influences the stabilities of adsorbed intermediates in the oxygen evolution reaction. Solvent is modeled by explicit nondissociated water molecules, and their structure is determined by a global optimization method. We find that the inclusion of an explicit solvent can significantly affect the geometry of adsorbed intermediates, changing from an interaction with the surface to an interaction with the water bilayer. These water structures consist of stacked octagonal sheets in an ordered network. Solvent stabilization is pronounced for adsorbed *OH and *OOH, which are capable of donating hydrogen bonds. We find little to no change in adsorbate binding energy as the number of layers of solvent is increased from 1 to 3, suggesting a single water bilayer is sufficient to describe the system. With either *O or *OH coadsorbates, the energetics of the reaction pathway are relatively unchanged with the inclusion of explicit solvent.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b02383</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-06, Vol.121 (21), p.11455-11463</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9542-0988 ; 0000-0001-9700-972X ; 0000-0002-6151-0755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gauthier, Joseph A</creatorcontrib><creatorcontrib>Dickens, Colin F</creatorcontrib><creatorcontrib>Chen, Leanne D</creatorcontrib><creatorcontrib>Doyle, Andrew D</creatorcontrib><creatorcontrib>Nørskov, Jens K</creatorcontrib><title>Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO2(110)</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We study the electrochemical interface between rutile IrO2(110) and water to investigate how the inclusion of an explicit solvent influences the stabilities of adsorbed intermediates in the oxygen evolution reaction. Solvent is modeled by explicit nondissociated water molecules, and their structure is determined by a global optimization method. We find that the inclusion of an explicit solvent can significantly affect the geometry of adsorbed intermediates, changing from an interaction with the surface to an interaction with the water bilayer. These water structures consist of stacked octagonal sheets in an ordered network. Solvent stabilization is pronounced for adsorbed *OH and *OOH, which are capable of donating hydrogen bonds. We find little to no change in adsorbate binding energy as the number of layers of solvent is increased from 1 to 3, suggesting a single water bilayer is sufficient to describe the system. With either *O or *OH coadsorbates, the energetics of the reaction pathway are relatively unchanged with the inclusion of explicit solvent.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kM1Lw0AQxRdRsFbvHnNUMHH2q8keJbRaKAT8OIfJ7K40hEayabH_vWssnubNG3iP-TF2yyHjIPgjUsjaL6Isb0DIQp6xGTdSpLnS-vxfq_ySXYXQAmgJXM7Y6q3vDjhu-12y9N7RGBLfD0n1ffx00Tr03X46vjqkSZQ4YncM25DEZT1U4o5zuL9mFx674G5Oc84-Vsv38iXdVM_r8mmTojB6TK0DBEPeuEYVhXFOFkJbQu0kWdVoqxbOe4VKCSHJ2IUShoNtcsw9EhVyzh7-cuO7ddvvh11sqznUvwzqyYwM6hMD-QPmp1Fj</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Gauthier, Joseph A</creator><creator>Dickens, Colin F</creator><creator>Chen, Leanne D</creator><creator>Doyle, Andrew D</creator><creator>Nørskov, Jens K</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-9542-0988</orcidid><orcidid>https://orcid.org/0000-0001-9700-972X</orcidid><orcidid>https://orcid.org/0000-0002-6151-0755</orcidid></search><sort><creationdate>20170601</creationdate><title>Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO2(110)</title><author>Gauthier, Joseph A ; Dickens, Colin F ; Chen, Leanne D ; Doyle, Andrew D ; Nørskov, Jens K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-de0a09cf9eb4889ee3825dca5e3cd4b5d46eff4a44223c9d642910db7a7facc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauthier, Joseph A</creatorcontrib><creatorcontrib>Dickens, Colin F</creatorcontrib><creatorcontrib>Chen, Leanne D</creatorcontrib><creatorcontrib>Doyle, Andrew D</creatorcontrib><creatorcontrib>Nørskov, Jens K</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauthier, Joseph A</au><au>Dickens, Colin F</au><au>Chen, Leanne D</au><au>Doyle, Andrew D</au><au>Nørskov, Jens K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO2(110)</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>121</volume><issue>21</issue><spage>11455</spage><epage>11463</epage><pages>11455-11463</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We study the electrochemical interface between rutile IrO2(110) and water to investigate how the inclusion of an explicit solvent influences the stabilities of adsorbed intermediates in the oxygen evolution reaction. Solvent is modeled by explicit nondissociated water molecules, and their structure is determined by a global optimization method. We find that the inclusion of an explicit solvent can significantly affect the geometry of adsorbed intermediates, changing from an interaction with the surface to an interaction with the water bilayer. These water structures consist of stacked octagonal sheets in an ordered network. Solvent stabilization is pronounced for adsorbed *OH and *OOH, which are capable of donating hydrogen bonds. We find little to no change in adsorbate binding energy as the number of layers of solvent is increased from 1 to 3, suggesting a single water bilayer is sufficient to describe the system. With either *O or *OH coadsorbates, the energetics of the reaction pathway are relatively unchanged with the inclusion of explicit solvent.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b02383</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9542-0988</orcidid><orcidid>https://orcid.org/0000-0001-9700-972X</orcidid><orcidid>https://orcid.org/0000-0002-6151-0755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-06, Vol.121 (21), p.11455-11463
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_7b02383
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO2(110)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvation%20Effects%20for%20Oxygen%20Evolution%20Reaction%20Catalysis%20on%20IrO2(110)&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gauthier,%20Joseph%20A&rft.date=2017-06-01&rft.volume=121&rft.issue=21&rft.spage=11455&rft.epage=11463&rft.pages=11455-11463&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b02383&rft_dat=%3Cacs%3Eb626002620%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-de0a09cf9eb4889ee3825dca5e3cd4b5d46eff4a44223c9d642910db7a7facc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true