Loading…

Indium-Rich AgInS2–ZnS Quantum DotsAg-/Zn-Dependent Photophysics and Photovoltaics

AgInS2–ZnS solid solution quantum dots (QDs) prepared with varying Ag/Zn ratios demonstrate composition-dependent photophysical properties. Absorption and emission processes are extremely complex in these compounds because of easily formed crystallographic defects which serve as intraband gap states...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2018-07, Vol.122 (26), p.14336-14344
Main Authors: Kobosko, Steven M, Kamat, Prashant V
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14344
container_issue 26
container_start_page 14336
container_title Journal of physical chemistry. C
container_volume 122
creator Kobosko, Steven M
Kamat, Prashant V
description AgInS2–ZnS solid solution quantum dots (QDs) prepared with varying Ag/Zn ratios demonstrate composition-dependent photophysical properties. Absorption and emission processes are extremely complex in these compounds because of easily formed crystallographic defects which serve as intraband gap states and provide additional excitation and relaxation pathways. In addition to valence to conduction band absorption, defect states located within the band gap are responsible for tail absorption in these nanoparticles and are assigned to AgIn antisite defects. These AgInS2–ZnS QDs display wavelength-dependent photoluminescence (PL) decays along with large Stokes shifts and long PL lifetimes, strongly suggesting that donor–acceptor pair recombination is the dominant radiative pathway. The excited-state interaction between AgInS2–ZnS and TiO2 is studied through the use of transient absorption spectroscopy, and a fast photoinduced electron-transfer rate constant of 5 × 1011 s–1 is determined. This interaction with TiO2 is further probed by testing various compositions of AgInS2–ZnS in liquid-junction solar cells, with the optimum device power conversion efficiency reaching 1.83%.
doi_str_mv 10.1021/acs.jpcc.8b03001
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_8b03001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a326698666</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-33b7c5b7e04b1b098d13e92e637238233d740f771175cb70fb5b28ac72df19223</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EEqUwZ5gF4PTZL8HJMGr5RKrEpyCkTiLbcZpErRPhBIkZe2DAVlgPC2ANBFoxeldncK_eIeSUgc-As4nUzq9brf1IAQKwPTJiMXIqgjDc_8-BOCRHztUAIQLDEXlKbV71G3pf6dJLVqld8K-396VdeHe9tF2_8WZN574_PpMVnSwtnZnW2NzYzrstm65py1dXaedJm2_BS7Pu5ECOyUEh186c7O6YPF5ePEyv6fzmKp0mcyo5jzuKqIQOlTAQKKYgjnKGJubmHAXHiCPmIoBCCMZEqJWAQoWKR1ILnhcs5hzH5GzbO_yf1U3_bIe1jEH2KyX7g4OUbCcFfwCGKlhT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Indium-Rich AgInS2–ZnS Quantum DotsAg-/Zn-Dependent Photophysics and Photovoltaics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kobosko, Steven M ; Kamat, Prashant V</creator><creatorcontrib>Kobosko, Steven M ; Kamat, Prashant V</creatorcontrib><description>AgInS2–ZnS solid solution quantum dots (QDs) prepared with varying Ag/Zn ratios demonstrate composition-dependent photophysical properties. Absorption and emission processes are extremely complex in these compounds because of easily formed crystallographic defects which serve as intraband gap states and provide additional excitation and relaxation pathways. In addition to valence to conduction band absorption, defect states located within the band gap are responsible for tail absorption in these nanoparticles and are assigned to AgIn antisite defects. These AgInS2–ZnS QDs display wavelength-dependent photoluminescence (PL) decays along with large Stokes shifts and long PL lifetimes, strongly suggesting that donor–acceptor pair recombination is the dominant radiative pathway. The excited-state interaction between AgInS2–ZnS and TiO2 is studied through the use of transient absorption spectroscopy, and a fast photoinduced electron-transfer rate constant of 5 × 1011 s–1 is determined. This interaction with TiO2 is further probed by testing various compositions of AgInS2–ZnS in liquid-junction solar cells, with the optimum device power conversion efficiency reaching 1.83%.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b03001</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-07, Vol.122 (26), p.14336-14344</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2465-6819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Kobosko, Steven M</creatorcontrib><creatorcontrib>Kamat, Prashant V</creatorcontrib><title>Indium-Rich AgInS2–ZnS Quantum DotsAg-/Zn-Dependent Photophysics and Photovoltaics</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>AgInS2–ZnS solid solution quantum dots (QDs) prepared with varying Ag/Zn ratios demonstrate composition-dependent photophysical properties. Absorption and emission processes are extremely complex in these compounds because of easily formed crystallographic defects which serve as intraband gap states and provide additional excitation and relaxation pathways. In addition to valence to conduction band absorption, defect states located within the band gap are responsible for tail absorption in these nanoparticles and are assigned to AgIn antisite defects. These AgInS2–ZnS QDs display wavelength-dependent photoluminescence (PL) decays along with large Stokes shifts and long PL lifetimes, strongly suggesting that donor–acceptor pair recombination is the dominant radiative pathway. The excited-state interaction between AgInS2–ZnS and TiO2 is studied through the use of transient absorption spectroscopy, and a fast photoinduced electron-transfer rate constant of 5 × 1011 s–1 is determined. This interaction with TiO2 is further probed by testing various compositions of AgInS2–ZnS in liquid-junction solar cells, with the optimum device power conversion efficiency reaching 1.83%.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtOwzAURS0EEqUwZ5gF4PTZL8HJMGr5RKrEpyCkTiLbcZpErRPhBIkZe2DAVlgPC2ANBFoxeldncK_eIeSUgc-As4nUzq9brf1IAQKwPTJiMXIqgjDc_8-BOCRHztUAIQLDEXlKbV71G3pf6dJLVqld8K-396VdeHe9tF2_8WZN574_PpMVnSwtnZnW2NzYzrstm65py1dXaedJm2_BS7Pu5ECOyUEh186c7O6YPF5ePEyv6fzmKp0mcyo5jzuKqIQOlTAQKKYgjnKGJubmHAXHiCPmIoBCCMZEqJWAQoWKR1ILnhcs5hzH5GzbO_yf1U3_bIe1jEH2KyX7g4OUbCcFfwCGKlhT</recordid><startdate>20180705</startdate><enddate>20180705</enddate><creator>Kobosko, Steven M</creator><creator>Kamat, Prashant V</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-2465-6819</orcidid></search><sort><creationdate>20180705</creationdate><title>Indium-Rich AgInS2–ZnS Quantum DotsAg-/Zn-Dependent Photophysics and Photovoltaics</title><author>Kobosko, Steven M ; Kamat, Prashant V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-33b7c5b7e04b1b098d13e92e637238233d740f771175cb70fb5b28ac72df19223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobosko, Steven M</creatorcontrib><creatorcontrib>Kamat, Prashant V</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobosko, Steven M</au><au>Kamat, Prashant V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indium-Rich AgInS2–ZnS Quantum DotsAg-/Zn-Dependent Photophysics and Photovoltaics</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-07-05</date><risdate>2018</risdate><volume>122</volume><issue>26</issue><spage>14336</spage><epage>14344</epage><pages>14336-14344</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>AgInS2–ZnS solid solution quantum dots (QDs) prepared with varying Ag/Zn ratios demonstrate composition-dependent photophysical properties. Absorption and emission processes are extremely complex in these compounds because of easily formed crystallographic defects which serve as intraband gap states and provide additional excitation and relaxation pathways. In addition to valence to conduction band absorption, defect states located within the band gap are responsible for tail absorption in these nanoparticles and are assigned to AgIn antisite defects. These AgInS2–ZnS QDs display wavelength-dependent photoluminescence (PL) decays along with large Stokes shifts and long PL lifetimes, strongly suggesting that donor–acceptor pair recombination is the dominant radiative pathway. The excited-state interaction between AgInS2–ZnS and TiO2 is studied through the use of transient absorption spectroscopy, and a fast photoinduced electron-transfer rate constant of 5 × 1011 s–1 is determined. This interaction with TiO2 is further probed by testing various compositions of AgInS2–ZnS in liquid-junction solar cells, with the optimum device power conversion efficiency reaching 1.83%.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b03001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2465-6819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-07, Vol.122 (26), p.14336-14344
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_8b03001
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Indium-Rich AgInS2–ZnS Quantum DotsAg-/Zn-Dependent Photophysics and Photovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T09%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indium-Rich%20AgInS2%E2%80%93ZnS%20Quantum%20Dots%EE%97%B8Ag-/Zn-Dependent%20Photophysics%20and%20Photovoltaics&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kobosko,%20Steven%20M&rft.date=2018-07-05&rft.volume=122&rft.issue=26&rft.spage=14336&rft.epage=14344&rft.pages=14336-14344&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b03001&rft_dat=%3Cacs%3Ea326698666%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a229t-33b7c5b7e04b1b098d13e92e637238233d740f771175cb70fb5b28ac72df19223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true