Loading…

Natural Band Alignments and Band Offsets of Sb2Se3 Solar Cells

Sb2Se3 is a promising material for use in photovoltaics, but the optimum device structure has not yet been identified. This study provides band alignment measurements between Sb2Se3, identical to that used in high-efficiency photovoltaic devices, and its two most commonly used window layers, namely,...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2020-12, Vol.3 (12), p.11617-11626
Main Authors: Shiel, Huw, Hutter, Oliver S, Phillips, Laurie J, Swallow, Jack E. N, Jones, Leanne A. H, Featherstone, Thomas J, Smiles, Matthew J, Thakur, Pardeep K, Lee, Tien-Lin, Dhanak, Vinod R, Major, Jonathan D, Veal, Tim D
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sb2Se3 is a promising material for use in photovoltaics, but the optimum device structure has not yet been identified. This study provides band alignment measurements between Sb2Se3, identical to that used in high-efficiency photovoltaic devices, and its two most commonly used window layers, namely, CdS and TiO2. Band alignments are measured via two different approaches: Anderson’s rule was used to predict an interface band alignment from measured natural band alignments, and the Kraut method was used in conjunction with hard X-ray photoemission spectroscopy to directly measure the band offsets at the interface. This allows examination of the effect of interface formation on the band alignments. The conduction band minimum (CBM) of TiO2 is found by the Kraut method to lie 0.82 eV below that of Sb2Se3, whereas the CdS CBM is only 0.01 eV below that of Sb2Se3. Furthermore, a significant difference is observed between the natural alignment- and Kraut method-determined offsets for TiO2/Sb2Se3, whereas there is little difference for CdS/Sb2Se3. Finally, these results are related to device performance, taking into consideration how these results may guide the future development of Sb2Se3 solar cells and providing a methodology that can be used to assess band alignments in device-relevant systems.
ISSN:2574-0962
2574-0962
DOI:10.1021/acsaem.0c01477