Loading…

Atomic-Scale Understanding of Li Storage Processes in the Ti4C3 and Chemically Ordered Ti2Ta2C3 MXenes: A Theoretical and Experimental Assessment

By first-principles calculation and experimental measurements, we investigated the lithiation process in the Ti4C3 and Ti2Ta2C3 MXenes. Our results show the successful synthesis of the Ti2Ta2C3 MXene with an interlayer distance of 0.4 nm, which supposes the correct delamination of the material. Our...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2022-02, Vol.5 (2), p.1801-1809
Main Authors: Maldonado-Lopez, Daniel, Rodriguez, Jassiel R, Pol, Vilas G, Syamsai, Ravuri, Andrews, Nirmala Grace, Gutiérrez-Ojeda, S. J, Ponce-Pérez, Rodrigo, Moreno-Armenta, Ma Guadalupe, Guerrero-Sánchez, Jonathan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1809
container_issue 2
container_start_page 1801
container_title ACS applied energy materials
container_volume 5
creator Maldonado-Lopez, Daniel
Rodriguez, Jassiel R
Pol, Vilas G
Syamsai, Ravuri
Andrews, Nirmala Grace
Gutiérrez-Ojeda, S. J
Ponce-Pérez, Rodrigo
Moreno-Armenta, Ma Guadalupe
Guerrero-Sánchez, Jonathan
description By first-principles calculation and experimental measurements, we investigated the lithiation process in the Ti4C3 and Ti2Ta2C3 MXenes. Our results show the successful synthesis of the Ti2Ta2C3 MXene with an interlayer distance of 0.4 nm, which supposes the correct delamination of the material. Our measurements also demonstrate that the double-ordered alloy Ti2Ta2C3 can store 4 times the amount of lithium than the pristine Ti4C3 MXene. By DFT calculation, we investigated the stability of the Ti x Ta4–x C3 MXenes. According to the calculations, five MXenes are stable, where the most stable 50% Ta/Ti ratio structure (Ti2Ta2C3) presents a chemically ordered composition. The Li intercalation processfor Ti4C3 and Ti2Ta2C3 MXenesis carried out as adatoms on the surface, with the T4 site being the most favorable. The chemically ordered MXenes provide better OCV values and can store more Li atoms than the Ti4C3 MXene. Also, the Li diffusion process demonstrates that Ti2Ta2C3 is a more efficient material to be employed as an anode in batteries since it provides the lowest energy barriers. Our results demonstrate the capability of the Ti2Ta2C3 alloy to be employed in energy storage applications thanks to the high stability and capacity to store Li ions in comparison with pristine Ti4C3 MXene.
doi_str_mv 10.1021/acsaem.1c03239
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_1c03239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b916643208</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-6ded6986469483c3ada7229ab1f8024f22f96e0977c129e97e3b37820edb568b3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNRuXc9aSJ1HOsm4C6E-oFKhKbgLk5mbNiWdyMwI-jP8x05sF67u45x7LnwI3VIyp4TRe6W9guOcasIZlxdowhZZmhAp2OW__hrNvD8QQqikgkk5QT9FGI6dTjZa9YC31oDzQVnT2R0eWrzq8CYMTu0Av7lBg_fgcWdx2AOuurTkOHpxuYeYofr-G69dTAATRVYpFvXXd7DgH3CBqz0MDsJo_Ltafn2A645gQ1wUY7Ifhxt01arew-xcp2j7uKzK52S1fnopi1WiqCQhEQaMkLlIhUxzrrkyKmNMqoa2OWFpy1grBRCZZZoyCTID3vAsZwRMsxB5w6fo7pQb0dWH4dPZ-K2mpB551iee9Zkn_wVWwmnF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic-Scale Understanding of Li Storage Processes in the Ti4C3 and Chemically Ordered Ti2Ta2C3 MXenes: A Theoretical and Experimental Assessment</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Maldonado-Lopez, Daniel ; Rodriguez, Jassiel R ; Pol, Vilas G ; Syamsai, Ravuri ; Andrews, Nirmala Grace ; Gutiérrez-Ojeda, S. J ; Ponce-Pérez, Rodrigo ; Moreno-Armenta, Ma Guadalupe ; Guerrero-Sánchez, Jonathan</creator><creatorcontrib>Maldonado-Lopez, Daniel ; Rodriguez, Jassiel R ; Pol, Vilas G ; Syamsai, Ravuri ; Andrews, Nirmala Grace ; Gutiérrez-Ojeda, S. J ; Ponce-Pérez, Rodrigo ; Moreno-Armenta, Ma Guadalupe ; Guerrero-Sánchez, Jonathan</creatorcontrib><description>By first-principles calculation and experimental measurements, we investigated the lithiation process in the Ti4C3 and Ti2Ta2C3 MXenes. Our results show the successful synthesis of the Ti2Ta2C3 MXene with an interlayer distance of 0.4 nm, which supposes the correct delamination of the material. Our measurements also demonstrate that the double-ordered alloy Ti2Ta2C3 can store 4 times the amount of lithium than the pristine Ti4C3 MXene. By DFT calculation, we investigated the stability of the Ti x Ta4–x C3 MXenes. According to the calculations, five MXenes are stable, where the most stable 50% Ta/Ti ratio structure (Ti2Ta2C3) presents a chemically ordered composition. The Li intercalation processfor Ti4C3 and Ti2Ta2C3 MXenesis carried out as adatoms on the surface, with the T4 site being the most favorable. The chemically ordered MXenes provide better OCV values and can store more Li atoms than the Ti4C3 MXene. Also, the Li diffusion process demonstrates that Ti2Ta2C3 is a more efficient material to be employed as an anode in batteries since it provides the lowest energy barriers. Our results demonstrate the capability of the Ti2Ta2C3 alloy to be employed in energy storage applications thanks to the high stability and capacity to store Li ions in comparison with pristine Ti4C3 MXene.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.1c03239</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-02, Vol.5 (2), p.1801-1809</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4106-1873 ; 0000-0002-4866-117X ; 0000-0003-1457-9677 ; 0000-0002-6726-1569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maldonado-Lopez, Daniel</creatorcontrib><creatorcontrib>Rodriguez, Jassiel R</creatorcontrib><creatorcontrib>Pol, Vilas G</creatorcontrib><creatorcontrib>Syamsai, Ravuri</creatorcontrib><creatorcontrib>Andrews, Nirmala Grace</creatorcontrib><creatorcontrib>Gutiérrez-Ojeda, S. J</creatorcontrib><creatorcontrib>Ponce-Pérez, Rodrigo</creatorcontrib><creatorcontrib>Moreno-Armenta, Ma Guadalupe</creatorcontrib><creatorcontrib>Guerrero-Sánchez, Jonathan</creatorcontrib><title>Atomic-Scale Understanding of Li Storage Processes in the Ti4C3 and Chemically Ordered Ti2Ta2C3 MXenes: A Theoretical and Experimental Assessment</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>By first-principles calculation and experimental measurements, we investigated the lithiation process in the Ti4C3 and Ti2Ta2C3 MXenes. Our results show the successful synthesis of the Ti2Ta2C3 MXene with an interlayer distance of 0.4 nm, which supposes the correct delamination of the material. Our measurements also demonstrate that the double-ordered alloy Ti2Ta2C3 can store 4 times the amount of lithium than the pristine Ti4C3 MXene. By DFT calculation, we investigated the stability of the Ti x Ta4–x C3 MXenes. According to the calculations, five MXenes are stable, where the most stable 50% Ta/Ti ratio structure (Ti2Ta2C3) presents a chemically ordered composition. The Li intercalation processfor Ti4C3 and Ti2Ta2C3 MXenesis carried out as adatoms on the surface, with the T4 site being the most favorable. The chemically ordered MXenes provide better OCV values and can store more Li atoms than the Ti4C3 MXene. Also, the Li diffusion process demonstrates that Ti2Ta2C3 is a more efficient material to be employed as an anode in batteries since it provides the lowest energy barriers. Our results demonstrate the capability of the Ti2Ta2C3 alloy to be employed in energy storage applications thanks to the high stability and capacity to store Li ions in comparison with pristine Ti4C3 MXene.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEtLw0AUhQdRsNRuXc9aSJ1HOsm4C6E-oFKhKbgLk5mbNiWdyMwI-jP8x05sF67u45x7LnwI3VIyp4TRe6W9guOcasIZlxdowhZZmhAp2OW__hrNvD8QQqikgkk5QT9FGI6dTjZa9YC31oDzQVnT2R0eWrzq8CYMTu0Av7lBg_fgcWdx2AOuurTkOHpxuYeYofr-G69dTAATRVYpFvXXd7DgH3CBqz0MDsJo_Ltafn2A645gQ1wUY7Ifhxt01arew-xcp2j7uKzK52S1fnopi1WiqCQhEQaMkLlIhUxzrrkyKmNMqoa2OWFpy1grBRCZZZoyCTID3vAsZwRMsxB5w6fo7pQb0dWH4dPZ-K2mpB551iee9Zkn_wVWwmnF</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Maldonado-Lopez, Daniel</creator><creator>Rodriguez, Jassiel R</creator><creator>Pol, Vilas G</creator><creator>Syamsai, Ravuri</creator><creator>Andrews, Nirmala Grace</creator><creator>Gutiérrez-Ojeda, S. J</creator><creator>Ponce-Pérez, Rodrigo</creator><creator>Moreno-Armenta, Ma Guadalupe</creator><creator>Guerrero-Sánchez, Jonathan</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-4106-1873</orcidid><orcidid>https://orcid.org/0000-0002-4866-117X</orcidid><orcidid>https://orcid.org/0000-0003-1457-9677</orcidid><orcidid>https://orcid.org/0000-0002-6726-1569</orcidid></search><sort><creationdate>20220228</creationdate><title>Atomic-Scale Understanding of Li Storage Processes in the Ti4C3 and Chemically Ordered Ti2Ta2C3 MXenes: A Theoretical and Experimental Assessment</title><author>Maldonado-Lopez, Daniel ; Rodriguez, Jassiel R ; Pol, Vilas G ; Syamsai, Ravuri ; Andrews, Nirmala Grace ; Gutiérrez-Ojeda, S. J ; Ponce-Pérez, Rodrigo ; Moreno-Armenta, Ma Guadalupe ; Guerrero-Sánchez, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-6ded6986469483c3ada7229ab1f8024f22f96e0977c129e97e3b37820edb568b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maldonado-Lopez, Daniel</creatorcontrib><creatorcontrib>Rodriguez, Jassiel R</creatorcontrib><creatorcontrib>Pol, Vilas G</creatorcontrib><creatorcontrib>Syamsai, Ravuri</creatorcontrib><creatorcontrib>Andrews, Nirmala Grace</creatorcontrib><creatorcontrib>Gutiérrez-Ojeda, S. J</creatorcontrib><creatorcontrib>Ponce-Pérez, Rodrigo</creatorcontrib><creatorcontrib>Moreno-Armenta, Ma Guadalupe</creatorcontrib><creatorcontrib>Guerrero-Sánchez, Jonathan</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maldonado-Lopez, Daniel</au><au>Rodriguez, Jassiel R</au><au>Pol, Vilas G</au><au>Syamsai, Ravuri</au><au>Andrews, Nirmala Grace</au><au>Gutiérrez-Ojeda, S. J</au><au>Ponce-Pérez, Rodrigo</au><au>Moreno-Armenta, Ma Guadalupe</au><au>Guerrero-Sánchez, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Scale Understanding of Li Storage Processes in the Ti4C3 and Chemically Ordered Ti2Ta2C3 MXenes: A Theoretical and Experimental Assessment</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-02-28</date><risdate>2022</risdate><volume>5</volume><issue>2</issue><spage>1801</spage><epage>1809</epage><pages>1801-1809</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>By first-principles calculation and experimental measurements, we investigated the lithiation process in the Ti4C3 and Ti2Ta2C3 MXenes. Our results show the successful synthesis of the Ti2Ta2C3 MXene with an interlayer distance of 0.4 nm, which supposes the correct delamination of the material. Our measurements also demonstrate that the double-ordered alloy Ti2Ta2C3 can store 4 times the amount of lithium than the pristine Ti4C3 MXene. By DFT calculation, we investigated the stability of the Ti x Ta4–x C3 MXenes. According to the calculations, five MXenes are stable, where the most stable 50% Ta/Ti ratio structure (Ti2Ta2C3) presents a chemically ordered composition. The Li intercalation processfor Ti4C3 and Ti2Ta2C3 MXenesis carried out as adatoms on the surface, with the T4 site being the most favorable. The chemically ordered MXenes provide better OCV values and can store more Li atoms than the Ti4C3 MXene. Also, the Li diffusion process demonstrates that Ti2Ta2C3 is a more efficient material to be employed as an anode in batteries since it provides the lowest energy barriers. Our results demonstrate the capability of the Ti2Ta2C3 alloy to be employed in energy storage applications thanks to the high stability and capacity to store Li ions in comparison with pristine Ti4C3 MXene.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.1c03239</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4106-1873</orcidid><orcidid>https://orcid.org/0000-0002-4866-117X</orcidid><orcidid>https://orcid.org/0000-0003-1457-9677</orcidid><orcidid>https://orcid.org/0000-0002-6726-1569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2022-02, Vol.5 (2), p.1801-1809
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_1c03239
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Atomic-Scale Understanding of Li Storage Processes in the Ti4C3 and Chemically Ordered Ti2Ta2C3 MXenes: A Theoretical and Experimental Assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Scale%20Understanding%20of%20Li%20Storage%20Processes%20in%20the%20Ti4C3%20and%20Chemically%20Ordered%20Ti2Ta2C3%20MXenes:%20A%20Theoretical%20and%20Experimental%20Assessment&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Maldonado-Lopez,%20Daniel&rft.date=2022-02-28&rft.volume=5&rft.issue=2&rft.spage=1801&rft.epage=1809&rft.pages=1801-1809&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.1c03239&rft_dat=%3Cacs%3Eb916643208%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a190t-6ded6986469483c3ada7229ab1f8024f22f96e0977c129e97e3b37820edb568b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true