Loading…

Developing a Double Protection Strategy for High-Performance Spinel LiNi0.5Mn1.5O4 Cathodes

LiNi0.5Mn1.5O4 is a promising cathode material with high-voltage and three-dimensional lithium-ion transport channels. Rapid capacity degradation due to HF corrosion has been a great challenge hindering the application of high-voltage cathode materials. Herein, a double protection strategy for high-...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2022-05, Vol.5 (5), p.6401-6409
Main Authors: Wu, Libin, Huo, Hua, Zhou, Qingjie, Yin, Xucai, Ma, Yulin, Wang, Jiajun, Du, Chunyu, Zuo, Pengjian, Yin, Geping, Gao, Yunzhi
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6409
container_issue 5
container_start_page 6401
container_title ACS applied energy materials
container_volume 5
creator Wu, Libin
Huo, Hua
Zhou, Qingjie
Yin, Xucai
Ma, Yulin
Wang, Jiajun
Du, Chunyu
Zuo, Pengjian
Yin, Geping
Gao, Yunzhi
description LiNi0.5Mn1.5O4 is a promising cathode material with high-voltage and three-dimensional lithium-ion transport channels. Rapid capacity degradation due to HF corrosion has been a great challenge hindering the application of high-voltage cathode materials. Herein, a double protection strategy for high-performance LiNi0.5Mn1.5O4 cathodes has been designed using Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with both high ionic conductivity and high surface basicity as the modifier of the poly­(vinylidene fluoride) (PVDF) binder and the HF scavenger. It has been demonstrated that the modified PVDF binder possesses a higher Li+ diffusion coefficient than incipient PVDF, resulting in better overall electrochemical properties. Meanwhile, the result of first-principles calculations revealed that the reaction between HF and LLZTO has higher chemical reactivity than that between HF and LiNi0.5Mn1.5O4. The scanning electron microscopy images further confirmed that the insoluble byproducts produced by HF corrosion deposit on the surface of LLZTO particles only because of the high chemical reactivity between HF and LLZTO, while the LNMO particles are well preserved. The modified LNMO-LLZTO cathode presents better cycling stability (even at elevated temperature) and rate capability than the LNMO cathode. This work provides a novel design strategy for high-performance lithium-ion batteries.
doi_str_mv 10.1021/acsaem.2c00837
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_2c00837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a007388763</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-47e8d8051521dd743a4d8fb4d083556743d2602145b643278c025c963115893e3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AUxBdRsNRePe9ZSHz7lWSPkqoVoi1UTx7CJvuSpqRZSbaC_70r7cHTDAPzHvMj5JZBzICze1NPBg8xrwEykV6QGVepjEAn_PKfvyaLadoDANMs4VrPyOcSv7F3X93QUkOX7lj1SDej81j7zg1060fjsf2hjRvpqmt30QbH4A9mqJFuQw97WnRvHcTqdWCxWkuaG79zFqcbctWYfsLFWefk4-nxPV9Fxfr5JX8oIsM0-EimmNkMFFOcWZtKYaTNmkrasESpJASWJ2GjVFUiBU-zGriqdSIYU5kWKObk7nQ3QCj37jgO4VvJoPwjU57IlGcy4hcgslTz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Developing a Double Protection Strategy for High-Performance Spinel LiNi0.5Mn1.5O4 Cathodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wu, Libin ; Huo, Hua ; Zhou, Qingjie ; Yin, Xucai ; Ma, Yulin ; Wang, Jiajun ; Du, Chunyu ; Zuo, Pengjian ; Yin, Geping ; Gao, Yunzhi</creator><creatorcontrib>Wu, Libin ; Huo, Hua ; Zhou, Qingjie ; Yin, Xucai ; Ma, Yulin ; Wang, Jiajun ; Du, Chunyu ; Zuo, Pengjian ; Yin, Geping ; Gao, Yunzhi</creatorcontrib><description>LiNi0.5Mn1.5O4 is a promising cathode material with high-voltage and three-dimensional lithium-ion transport channels. Rapid capacity degradation due to HF corrosion has been a great challenge hindering the application of high-voltage cathode materials. Herein, a double protection strategy for high-performance LiNi0.5Mn1.5O4 cathodes has been designed using Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with both high ionic conductivity and high surface basicity as the modifier of the poly­(vinylidene fluoride) (PVDF) binder and the HF scavenger. It has been demonstrated that the modified PVDF binder possesses a higher Li+ diffusion coefficient than incipient PVDF, resulting in better overall electrochemical properties. Meanwhile, the result of first-principles calculations revealed that the reaction between HF and LLZTO has higher chemical reactivity than that between HF and LiNi0.5Mn1.5O4. The scanning electron microscopy images further confirmed that the insoluble byproducts produced by HF corrosion deposit on the surface of LLZTO particles only because of the high chemical reactivity between HF and LLZTO, while the LNMO particles are well preserved. The modified LNMO-LLZTO cathode presents better cycling stability (even at elevated temperature) and rate capability than the LNMO cathode. This work provides a novel design strategy for high-performance lithium-ion batteries.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c00837</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-05, Vol.5 (5), p.6401-6409</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8242-9075 ; 0000-0002-3643-157X ; 0000-0003-0547-7724 ; 0000-0002-2790-8225 ; 0000-0002-4411-8399 ; 0000-0001-8777-5105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Libin</creatorcontrib><creatorcontrib>Huo, Hua</creatorcontrib><creatorcontrib>Zhou, Qingjie</creatorcontrib><creatorcontrib>Yin, Xucai</creatorcontrib><creatorcontrib>Ma, Yulin</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Zuo, Pengjian</creatorcontrib><creatorcontrib>Yin, Geping</creatorcontrib><creatorcontrib>Gao, Yunzhi</creatorcontrib><title>Developing a Double Protection Strategy for High-Performance Spinel LiNi0.5Mn1.5O4 Cathodes</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>LiNi0.5Mn1.5O4 is a promising cathode material with high-voltage and three-dimensional lithium-ion transport channels. Rapid capacity degradation due to HF corrosion has been a great challenge hindering the application of high-voltage cathode materials. Herein, a double protection strategy for high-performance LiNi0.5Mn1.5O4 cathodes has been designed using Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with both high ionic conductivity and high surface basicity as the modifier of the poly­(vinylidene fluoride) (PVDF) binder and the HF scavenger. It has been demonstrated that the modified PVDF binder possesses a higher Li+ diffusion coefficient than incipient PVDF, resulting in better overall electrochemical properties. Meanwhile, the result of first-principles calculations revealed that the reaction between HF and LLZTO has higher chemical reactivity than that between HF and LiNi0.5Mn1.5O4. The scanning electron microscopy images further confirmed that the insoluble byproducts produced by HF corrosion deposit on the surface of LLZTO particles only because of the high chemical reactivity between HF and LLZTO, while the LNMO particles are well preserved. The modified LNMO-LLZTO cathode presents better cycling stability (even at elevated temperature) and rate capability than the LNMO cathode. This work provides a novel design strategy for high-performance lithium-ion batteries.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM1Lw0AUxBdRsNRePe9ZSHz7lWSPkqoVoi1UTx7CJvuSpqRZSbaC_70r7cHTDAPzHvMj5JZBzICze1NPBg8xrwEykV6QGVepjEAn_PKfvyaLadoDANMs4VrPyOcSv7F3X93QUkOX7lj1SDej81j7zg1060fjsf2hjRvpqmt30QbH4A9mqJFuQw97WnRvHcTqdWCxWkuaG79zFqcbctWYfsLFWefk4-nxPV9Fxfr5JX8oIsM0-EimmNkMFFOcWZtKYaTNmkrasESpJASWJ2GjVFUiBU-zGriqdSIYU5kWKObk7nQ3QCj37jgO4VvJoPwjU57IlGcy4hcgslTz</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Wu, Libin</creator><creator>Huo, Hua</creator><creator>Zhou, Qingjie</creator><creator>Yin, Xucai</creator><creator>Ma, Yulin</creator><creator>Wang, Jiajun</creator><creator>Du, Chunyu</creator><creator>Zuo, Pengjian</creator><creator>Yin, Geping</creator><creator>Gao, Yunzhi</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8242-9075</orcidid><orcidid>https://orcid.org/0000-0002-3643-157X</orcidid><orcidid>https://orcid.org/0000-0003-0547-7724</orcidid><orcidid>https://orcid.org/0000-0002-2790-8225</orcidid><orcidid>https://orcid.org/0000-0002-4411-8399</orcidid><orcidid>https://orcid.org/0000-0001-8777-5105</orcidid></search><sort><creationdate>20220523</creationdate><title>Developing a Double Protection Strategy for High-Performance Spinel LiNi0.5Mn1.5O4 Cathodes</title><author>Wu, Libin ; Huo, Hua ; Zhou, Qingjie ; Yin, Xucai ; Ma, Yulin ; Wang, Jiajun ; Du, Chunyu ; Zuo, Pengjian ; Yin, Geping ; Gao, Yunzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-47e8d8051521dd743a4d8fb4d083556743d2602145b643278c025c963115893e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Libin</creatorcontrib><creatorcontrib>Huo, Hua</creatorcontrib><creatorcontrib>Zhou, Qingjie</creatorcontrib><creatorcontrib>Yin, Xucai</creatorcontrib><creatorcontrib>Ma, Yulin</creatorcontrib><creatorcontrib>Wang, Jiajun</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Zuo, Pengjian</creatorcontrib><creatorcontrib>Yin, Geping</creatorcontrib><creatorcontrib>Gao, Yunzhi</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Libin</au><au>Huo, Hua</au><au>Zhou, Qingjie</au><au>Yin, Xucai</au><au>Ma, Yulin</au><au>Wang, Jiajun</au><au>Du, Chunyu</au><au>Zuo, Pengjian</au><au>Yin, Geping</au><au>Gao, Yunzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a Double Protection Strategy for High-Performance Spinel LiNi0.5Mn1.5O4 Cathodes</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-05-23</date><risdate>2022</risdate><volume>5</volume><issue>5</issue><spage>6401</spage><epage>6409</epage><pages>6401-6409</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>LiNi0.5Mn1.5O4 is a promising cathode material with high-voltage and three-dimensional lithium-ion transport channels. Rapid capacity degradation due to HF corrosion has been a great challenge hindering the application of high-voltage cathode materials. Herein, a double protection strategy for high-performance LiNi0.5Mn1.5O4 cathodes has been designed using Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with both high ionic conductivity and high surface basicity as the modifier of the poly­(vinylidene fluoride) (PVDF) binder and the HF scavenger. It has been demonstrated that the modified PVDF binder possesses a higher Li+ diffusion coefficient than incipient PVDF, resulting in better overall electrochemical properties. Meanwhile, the result of first-principles calculations revealed that the reaction between HF and LLZTO has higher chemical reactivity than that between HF and LiNi0.5Mn1.5O4. The scanning electron microscopy images further confirmed that the insoluble byproducts produced by HF corrosion deposit on the surface of LLZTO particles only because of the high chemical reactivity between HF and LLZTO, while the LNMO particles are well preserved. The modified LNMO-LLZTO cathode presents better cycling stability (even at elevated temperature) and rate capability than the LNMO cathode. This work provides a novel design strategy for high-performance lithium-ion batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c00837</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8242-9075</orcidid><orcidid>https://orcid.org/0000-0002-3643-157X</orcidid><orcidid>https://orcid.org/0000-0003-0547-7724</orcidid><orcidid>https://orcid.org/0000-0002-2790-8225</orcidid><orcidid>https://orcid.org/0000-0002-4411-8399</orcidid><orcidid>https://orcid.org/0000-0001-8777-5105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2022-05, Vol.5 (5), p.6401-6409
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_2c00837
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Developing a Double Protection Strategy for High-Performance Spinel LiNi0.5Mn1.5O4 Cathodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20Double%20Protection%20Strategy%20for%20High-Performance%20Spinel%20LiNi0.5Mn1.5O4%20Cathodes&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Wu,%20Libin&rft.date=2022-05-23&rft.volume=5&rft.issue=5&rft.spage=6401&rft.epage=6409&rft.pages=6401-6409&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c00837&rft_dat=%3Cacs%3Ea007388763%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a190t-47e8d8051521dd743a4d8fb4d083556743d2602145b643278c025c963115893e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true