Loading…

Sodium-Ion/Crystal Water Cointercalated δ‑MnO2 with Improved Performance for Aqueous Zinc-Ion Batteries

Aqueous zinc-ion batteries (AZIBs) have gained much attention because of their high theoretical capacity, low cost, and high level of safety merits. Nevertheless, the progress of their practical applications is often restricted by the poor structural degradation in cathodes and inherently sluggish t...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2024-11, Vol.7 (21), p.9746-9755
Main Authors: Liu, Guangzhan, Ye, Zhongqiang, Jiang, Ziyan, Zhou, Peng, Li, Zhou, Luo, Qi, Li, Wen, Huang, Zhifeng, Liu, Li
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9755
container_issue 21
container_start_page 9746
container_title ACS applied energy materials
container_volume 7
creator Liu, Guangzhan
Ye, Zhongqiang
Jiang, Ziyan
Zhou, Peng
Li, Zhou
Luo, Qi
Li, Wen
Huang, Zhifeng
Liu, Li
description Aqueous zinc-ion batteries (AZIBs) have gained much attention because of their high theoretical capacity, low cost, and high level of safety merits. Nevertheless, the progress of their practical applications is often restricted by the poor structural degradation in cathodes and inherently sluggish transport kinetics. Herein, we developed layered Na0.08MnO2·0.57H2O nanoflowers by a simple and effective hydrothermal method for the cathode of AZIBs. Na0.08MnO2·0.57H2O was obtained by the cointercalated sodium ion and minimal water in crystalline δ-MnO2. Consequently, the Na0.08MnO2·0.57H2O cathode delivers a high capacity (368 mA h g–1 at 0.1 A g–1) and a satisfactory cycle stability above 250 cycles at 0.5 A g–1. Our research could provide some ideas for the enhanced electrochemical performance of rechargeable AZIBs.
doi_str_mv 10.1021/acsaem.4c01530
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_4c01530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b29963677</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-713ae94a70ac46bd4337f7ae0be786609614aa6c6bfc18731c531b82526eddcb3</originalsourceid><addsrcrecordid>eNpNkE1OwzAQRi0EElXplrXXSGk9dmInyxLxE6moSICQ2EQTxxGJmhjiBMSOK3AXzsEhOAmu2gWr75tZvNE8Qk6BzYFxWKB2aNp5qBlEgh2QCY9UGLBE8sN__ZjMnGsYY5CA5EkyIc2dLeuxDTLbLdL-ww24oY84mJ6mtu58atz4saQ_37-fXzfdmtP3enimWfvS2ze_vzV9ZfsWO22oL3T5Oho7OvpUd3pLpec4eExt3Ak5qnDjzGyfU_JweXGfXger9VWWLlcBAmdDoECgSUJUDHUoizIUQlUKDSuMiqX0b0CIKLUsKg2xEqAjAUXMIy5NWepCTMnZjuud5I0d-85fy4HlW1H5TlS-FyX-AOxGX1I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sodium-Ion/Crystal Water Cointercalated δ‑MnO2 with Improved Performance for Aqueous Zinc-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Liu, Guangzhan ; Ye, Zhongqiang ; Jiang, Ziyan ; Zhou, Peng ; Li, Zhou ; Luo, Qi ; Li, Wen ; Huang, Zhifeng ; Liu, Li</creator><creatorcontrib>Liu, Guangzhan ; Ye, Zhongqiang ; Jiang, Ziyan ; Zhou, Peng ; Li, Zhou ; Luo, Qi ; Li, Wen ; Huang, Zhifeng ; Liu, Li</creatorcontrib><description>Aqueous zinc-ion batteries (AZIBs) have gained much attention because of their high theoretical capacity, low cost, and high level of safety merits. Nevertheless, the progress of their practical applications is often restricted by the poor structural degradation in cathodes and inherently sluggish transport kinetics. Herein, we developed layered Na0.08MnO2·0.57H2O nanoflowers by a simple and effective hydrothermal method for the cathode of AZIBs. Na0.08MnO2·0.57H2O was obtained by the cointercalated sodium ion and minimal water in crystalline δ-MnO2. Consequently, the Na0.08MnO2·0.57H2O cathode delivers a high capacity (368 mA h g–1 at 0.1 A g–1) and a satisfactory cycle stability above 250 cycles at 0.5 A g–1. Our research could provide some ideas for the enhanced electrochemical performance of rechargeable AZIBs.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c01530</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-11, Vol.7 (21), p.9746-9755</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8613-8171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Guangzhan</creatorcontrib><creatorcontrib>Ye, Zhongqiang</creatorcontrib><creatorcontrib>Jiang, Ziyan</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Luo, Qi</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><title>Sodium-Ion/Crystal Water Cointercalated δ‑MnO2 with Improved Performance for Aqueous Zinc-Ion Batteries</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Aqueous zinc-ion batteries (AZIBs) have gained much attention because of their high theoretical capacity, low cost, and high level of safety merits. Nevertheless, the progress of their practical applications is often restricted by the poor structural degradation in cathodes and inherently sluggish transport kinetics. Herein, we developed layered Na0.08MnO2·0.57H2O nanoflowers by a simple and effective hydrothermal method for the cathode of AZIBs. Na0.08MnO2·0.57H2O was obtained by the cointercalated sodium ion and minimal water in crystalline δ-MnO2. Consequently, the Na0.08MnO2·0.57H2O cathode delivers a high capacity (368 mA h g–1 at 0.1 A g–1) and a satisfactory cycle stability above 250 cycles at 0.5 A g–1. Our research could provide some ideas for the enhanced electrochemical performance of rechargeable AZIBs.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkE1OwzAQRi0EElXplrXXSGk9dmInyxLxE6moSICQ2EQTxxGJmhjiBMSOK3AXzsEhOAmu2gWr75tZvNE8Qk6BzYFxWKB2aNp5qBlEgh2QCY9UGLBE8sN__ZjMnGsYY5CA5EkyIc2dLeuxDTLbLdL-ww24oY84mJ6mtu58atz4saQ_37-fXzfdmtP3enimWfvS2ze_vzV9ZfsWO22oL3T5Oho7OvpUd3pLpec4eExt3Ak5qnDjzGyfU_JweXGfXger9VWWLlcBAmdDoECgSUJUDHUoizIUQlUKDSuMiqX0b0CIKLUsKg2xEqAjAUXMIy5NWepCTMnZjuud5I0d-85fy4HlW1H5TlS-FyX-AOxGX1I</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Liu, Guangzhan</creator><creator>Ye, Zhongqiang</creator><creator>Jiang, Ziyan</creator><creator>Zhou, Peng</creator><creator>Li, Zhou</creator><creator>Luo, Qi</creator><creator>Li, Wen</creator><creator>Huang, Zhifeng</creator><creator>Liu, Li</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-8613-8171</orcidid></search><sort><creationdate>20241111</creationdate><title>Sodium-Ion/Crystal Water Cointercalated δ‑MnO2 with Improved Performance for Aqueous Zinc-Ion Batteries</title><author>Liu, Guangzhan ; Ye, Zhongqiang ; Jiang, Ziyan ; Zhou, Peng ; Li, Zhou ; Luo, Qi ; Li, Wen ; Huang, Zhifeng ; Liu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-713ae94a70ac46bd4337f7ae0be786609614aa6c6bfc18731c531b82526eddcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guangzhan</creatorcontrib><creatorcontrib>Ye, Zhongqiang</creatorcontrib><creatorcontrib>Jiang, Ziyan</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Luo, Qi</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guangzhan</au><au>Ye, Zhongqiang</au><au>Jiang, Ziyan</au><au>Zhou, Peng</au><au>Li, Zhou</au><au>Luo, Qi</au><au>Li, Wen</au><au>Huang, Zhifeng</au><au>Liu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium-Ion/Crystal Water Cointercalated δ‑MnO2 with Improved Performance for Aqueous Zinc-Ion Batteries</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-11-11</date><risdate>2024</risdate><volume>7</volume><issue>21</issue><spage>9746</spage><epage>9755</epage><pages>9746-9755</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Aqueous zinc-ion batteries (AZIBs) have gained much attention because of their high theoretical capacity, low cost, and high level of safety merits. Nevertheless, the progress of their practical applications is often restricted by the poor structural degradation in cathodes and inherently sluggish transport kinetics. Herein, we developed layered Na0.08MnO2·0.57H2O nanoflowers by a simple and effective hydrothermal method for the cathode of AZIBs. Na0.08MnO2·0.57H2O was obtained by the cointercalated sodium ion and minimal water in crystalline δ-MnO2. Consequently, the Na0.08MnO2·0.57H2O cathode delivers a high capacity (368 mA h g–1 at 0.1 A g–1) and a satisfactory cycle stability above 250 cycles at 0.5 A g–1. Our research could provide some ideas for the enhanced electrochemical performance of rechargeable AZIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c01530</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8613-8171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-11, Vol.7 (21), p.9746-9755
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_4c01530
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Sodium-Ion/Crystal Water Cointercalated δ‑MnO2 with Improved Performance for Aqueous Zinc-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium-Ion/Crystal%20Water%20Cointercalated%20%CE%B4%E2%80%91MnO2%20with%20Improved%20Performance%20for%20Aqueous%20Zinc-Ion%20Batteries&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Liu,%20Guangzhan&rft.date=2024-11-11&rft.volume=7&rft.issue=21&rft.spage=9746&rft.epage=9755&rft.pages=9746-9755&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c01530&rft_dat=%3Cacs%3Eb29963677%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a120t-713ae94a70ac46bd4337f7ae0be786609614aa6c6bfc18731c531b82526eddcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true