Loading…

High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO2 and CH3NH3PbI3 Layers

Flexible perovskite solar cells (PSCs) were ideal candidates for wearable devices due to the merits of flexibility, high efficiency, and being lightweight, and they could be fabricated in a continuous roll-to-roll production process to achieve large-area and low cost devices. Herein, the high effici...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials 2019-05, Vol.2 (5), p.3676-3682
Main Authors: Zhu, Ning, Qi, Xin, Zhang, Yuqing, Liu, Ganghong, Wu, Cuncun, Wang, Duo, Guo, Xuan, Luo, Wei, Li, Xiangdong, Hu, Haozhe, Chen, Zhijian, Xiao, Lixin, Qu, Bo
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flexible perovskite solar cells (PSCs) were ideal candidates for wearable devices due to the merits of flexibility, high efficiency, and being lightweight, and they could be fabricated in a continuous roll-to-roll production process to achieve large-area and low cost devices. Herein, the high efficiency (up to 18.53%) and fill factor (0.81) of flexible PSCs (ITO/SnO2/KCl/MAPbI3/spiro-OMeTAD/Ag) were achieved by low-pressure assisted solution processing under low temperature (⩽100 °C). The surface morphology and crystallinity of perovskite films were effectively promoted by the KCl modification and the defect density of perovskite films as well as the hysteresis of the corresponding devices was reduced accordingly. In addition, the stability and bendability of the KCl-modified flexible PSCs were improved simultaneously. To the best of our knowledge, both the efficiency and fill factor are the best among all flexible PSCs reported to date. Therefore, the insertion of KCl between SnO2 and MAPbI3 layers provided a promising strategy for highly efficient flexible PSCs fabricated in low temperature (⩽100 °C) conditions.
ISSN:2574-0962
2574-0962
DOI:10.1021/acsaem.9b00391