Loading…
Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors
The evolution of newfangled supercapacitor electrode materials has always been a task full of opportunities and challenges. In this work, we synthesized amorphous Co2SiO4 nanobelts by a template method to construct the nanostructure and combined Co2SiO4 nanobelts with graphene oxide (GO) to improve...
Saved in:
Published in: | ACS applied energy materials 2019-05, Vol.2 (5), p.3830-3839 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3839 |
container_issue | 5 |
container_start_page | 3830 |
container_title | ACS applied energy materials |
container_volume | 2 |
creator | Cheng, Yan Zhang, Yifu Meng, Changgong |
description | The evolution of newfangled supercapacitor electrode materials has always been a task full of opportunities and challenges. In this work, we synthesized amorphous Co2SiO4 nanobelts by a template method to construct the nanostructure and combined Co2SiO4 nanobelts with graphene oxide (GO) to improve their electrochemical properties. The one-dimensional nanostructure enhanced the transport of electrons along the long axis, which facilitated current collection during cycling, thereby improving the electrochemical performances. At the same time, GO not only formed a good charge-transfer network but also prevented the aggregation and accumulation of Co2SiO4 nanobelts. After optimizing the ratio of Co2SiO4 to GO in the composites, the specific capacitance of Co2SiO4/GO composites totaled 511 F g–1 (332 C g–1) at 0.5 A g–1, and the capacitance retention rate measured 84% after 10 000 cycles. The excellent electrochemical performances of Co2SiO4/GO composites were further demonstrated by assembling a hybrid supercapacitor (HSC) device. The HSC device was assembled by Co2SiO4/GO composites and activated carbon (AC) with the maximum specific capacitance of 229 mF cm–2 (183 mC cm–2) at 3 mA cm–2, and 49% initial capacitance was maintained after 5000 cycles. Furthermore, the HSC exhibited a maximum energy density of 0.41 W h m–2 and a maximum power density of 96 W m–2, demonstrating the potential of Co2SiO4 nanobelts/GO composites applied to hybrid supercapacitors. |
doi_str_mv | 10.1021/acsaem.9b00511 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_9b00511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e92003607</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-609146950537cb83f4d421ec33e5ea4501dacaf887ed5acf793e2b66d41dea233</originalsourceid><addsrcrecordid>eNpNkMtqwzAUREVpoSHNtmutC0708CNahpAXhKaQdG2upWvsYFtGUmj7Hf3hOiSLrmZghhk4hLxyNuVM8BloD9hOVcFYwvkDGYkkiyOmUvH4zz-TifdnxhhXPBVKjcjvCdu-gYB0DYWrNYTadtSWdNFa11f24unSimN9iOk7dLbAJvjZxkFfYYf08F0bHAptb30d0NOvOlR01VXQaTR01aAOzuoK22G5oR_oSuvaa-jp4Oj2Z_g09Hjp0WnoQdfBOv9CnkpoPE7uOiaf69VpuY32h81uudhHwBULUcoUj1OVsERmupjLMjax4KilxAQhThg3oKGczzM0CegyUxJFkaYm5gZBSDkmb7fdAV5-thfXDW85Z_mVaH4jmt-Jyj-Re23I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors</title><source>Access via American Chemical Society</source><creator>Cheng, Yan ; Zhang, Yifu ; Meng, Changgong</creator><creatorcontrib>Cheng, Yan ; Zhang, Yifu ; Meng, Changgong</creatorcontrib><description>The evolution of newfangled supercapacitor electrode materials has always been a task full of opportunities and challenges. In this work, we synthesized amorphous Co2SiO4 nanobelts by a template method to construct the nanostructure and combined Co2SiO4 nanobelts with graphene oxide (GO) to improve their electrochemical properties. The one-dimensional nanostructure enhanced the transport of electrons along the long axis, which facilitated current collection during cycling, thereby improving the electrochemical performances. At the same time, GO not only formed a good charge-transfer network but also prevented the aggregation and accumulation of Co2SiO4 nanobelts. After optimizing the ratio of Co2SiO4 to GO in the composites, the specific capacitance of Co2SiO4/GO composites totaled 511 F g–1 (332 C g–1) at 0.5 A g–1, and the capacitance retention rate measured 84% after 10 000 cycles. The excellent electrochemical performances of Co2SiO4/GO composites were further demonstrated by assembling a hybrid supercapacitor (HSC) device. The HSC device was assembled by Co2SiO4/GO composites and activated carbon (AC) with the maximum specific capacitance of 229 mF cm–2 (183 mC cm–2) at 3 mA cm–2, and 49% initial capacitance was maintained after 5000 cycles. Furthermore, the HSC exhibited a maximum energy density of 0.41 W h m–2 and a maximum power density of 96 W m–2, demonstrating the potential of Co2SiO4 nanobelts/GO composites applied to hybrid supercapacitors.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b00511</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-05, Vol.2 (5), p.3830-3839</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2546-9502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Zhang, Yifu</creatorcontrib><creatorcontrib>Meng, Changgong</creatorcontrib><title>Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The evolution of newfangled supercapacitor electrode materials has always been a task full of opportunities and challenges. In this work, we synthesized amorphous Co2SiO4 nanobelts by a template method to construct the nanostructure and combined Co2SiO4 nanobelts with graphene oxide (GO) to improve their electrochemical properties. The one-dimensional nanostructure enhanced the transport of electrons along the long axis, which facilitated current collection during cycling, thereby improving the electrochemical performances. At the same time, GO not only formed a good charge-transfer network but also prevented the aggregation and accumulation of Co2SiO4 nanobelts. After optimizing the ratio of Co2SiO4 to GO in the composites, the specific capacitance of Co2SiO4/GO composites totaled 511 F g–1 (332 C g–1) at 0.5 A g–1, and the capacitance retention rate measured 84% after 10 000 cycles. The excellent electrochemical performances of Co2SiO4/GO composites were further demonstrated by assembling a hybrid supercapacitor (HSC) device. The HSC device was assembled by Co2SiO4/GO composites and activated carbon (AC) with the maximum specific capacitance of 229 mF cm–2 (183 mC cm–2) at 3 mA cm–2, and 49% initial capacitance was maintained after 5000 cycles. Furthermore, the HSC exhibited a maximum energy density of 0.41 W h m–2 and a maximum power density of 96 W m–2, demonstrating the potential of Co2SiO4 nanobelts/GO composites applied to hybrid supercapacitors.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkMtqwzAUREVpoSHNtmutC0708CNahpAXhKaQdG2upWvsYFtGUmj7Hf3hOiSLrmZghhk4hLxyNuVM8BloD9hOVcFYwvkDGYkkiyOmUvH4zz-TifdnxhhXPBVKjcjvCdu-gYB0DYWrNYTadtSWdNFa11f24unSimN9iOk7dLbAJvjZxkFfYYf08F0bHAptb30d0NOvOlR01VXQaTR01aAOzuoK22G5oR_oSuvaa-jp4Oj2Z_g09Hjp0WnoQdfBOv9CnkpoPE7uOiaf69VpuY32h81uudhHwBULUcoUj1OVsERmupjLMjax4KilxAQhThg3oKGczzM0CegyUxJFkaYm5gZBSDkmb7fdAV5-thfXDW85Z_mVaH4jmt-Jyj-Re23I</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Cheng, Yan</creator><creator>Zhang, Yifu</creator><creator>Meng, Changgong</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-2546-9502</orcidid></search><sort><creationdate>20190528</creationdate><title>Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors</title><author>Cheng, Yan ; Zhang, Yifu ; Meng, Changgong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-609146950537cb83f4d421ec33e5ea4501dacaf887ed5acf793e2b66d41dea233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yan</creatorcontrib><creatorcontrib>Zhang, Yifu</creatorcontrib><creatorcontrib>Meng, Changgong</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yan</au><au>Zhang, Yifu</au><au>Meng, Changgong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>2</volume><issue>5</issue><spage>3830</spage><epage>3839</epage><pages>3830-3839</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The evolution of newfangled supercapacitor electrode materials has always been a task full of opportunities and challenges. In this work, we synthesized amorphous Co2SiO4 nanobelts by a template method to construct the nanostructure and combined Co2SiO4 nanobelts with graphene oxide (GO) to improve their electrochemical properties. The one-dimensional nanostructure enhanced the transport of electrons along the long axis, which facilitated current collection during cycling, thereby improving the electrochemical performances. At the same time, GO not only formed a good charge-transfer network but also prevented the aggregation and accumulation of Co2SiO4 nanobelts. After optimizing the ratio of Co2SiO4 to GO in the composites, the specific capacitance of Co2SiO4/GO composites totaled 511 F g–1 (332 C g–1) at 0.5 A g–1, and the capacitance retention rate measured 84% after 10 000 cycles. The excellent electrochemical performances of Co2SiO4/GO composites were further demonstrated by assembling a hybrid supercapacitor (HSC) device. The HSC device was assembled by Co2SiO4/GO composites and activated carbon (AC) with the maximum specific capacitance of 229 mF cm–2 (183 mC cm–2) at 3 mA cm–2, and 49% initial capacitance was maintained after 5000 cycles. Furthermore, the HSC exhibited a maximum energy density of 0.41 W h m–2 and a maximum power density of 96 W m–2, demonstrating the potential of Co2SiO4 nanobelts/GO composites applied to hybrid supercapacitors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b00511</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2546-9502</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2019-05, Vol.2 (5), p.3830-3839 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_acs_journals_10_1021_acsaem_9b00511 |
source | Access via American Chemical Society |
title | Template Fabrication of Amorphous Co2SiO4 Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Template%20Fabrication%20of%20Amorphous%20Co2SiO4%20Nanobelts/Graphene%20Oxide%20Composites%20with%20Enhanced%20Electrochemical%20Performances%20for%20Hybrid%20Supercapacitors&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Cheng,%20Yan&rft.date=2019-05-28&rft.volume=2&rft.issue=5&rft.spage=3830&rft.epage=3839&rft.pages=3830-3839&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b00511&rft_dat=%3Cacs%3Ee92003607%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a190t-609146950537cb83f4d421ec33e5ea4501dacaf887ed5acf793e2b66d41dea233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |