Loading…

NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors

A binder-free, electrically conducting nickel cobalt oxide (NiCo2O4)-reticulated vitreous carbon (RVC) foam (NiCo2O4@RVC) electrode was prepared by template carbonization of open-cell polyurethane foam followed by the hydrothermal growth of NiCo2O4 nanoneedles, leading to the formation of a hierarch...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied nano materials 2024-01, Vol.7 (2), p.2312-2324
Main Authors: Yadav, Kaumudi, Ovhal, Manoj Mayaji, Parmar, Saurabh, Gaikwad, Nishant, Datar, Suwarna, Kang, Jae-Wook, Patro, T. Umasankar
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2324
container_issue 2
container_start_page 2312
container_title ACS applied nano materials
container_volume 7
creator Yadav, Kaumudi
Ovhal, Manoj Mayaji
Parmar, Saurabh
Gaikwad, Nishant
Datar, Suwarna
Kang, Jae-Wook
Patro, T. Umasankar
description A binder-free, electrically conducting nickel cobalt oxide (NiCo2O4)-reticulated vitreous carbon (RVC) foam (NiCo2O4@RVC) electrode was prepared by template carbonization of open-cell polyurethane foam followed by the hydrothermal growth of NiCo2O4 nanoneedles, leading to the formation of a hierarchical porous electrode. The growth of NiCo2O4 nanoneedles (length and diameter) on RVC foam was found to depend on hydrothermal coating time, which varied between 6 and 12 h. However, optimally grown NiCo2O4 nanoneedles for 8 h on an RVC foam with an average diameter of 77(±9) nm and length of ∼2 μm exhibited the lowest charge-transfer resistance, resulting in the areal capacitance (C a) of ∼2.45 F/cm2 at a scan rate of 5 mV/s. A symmetric supercapacitor (SC) device exhibited a maximum C a of 1.22 F/cm2 at a current density of 1 mA/cm2 and an energy density of 2.51 W h/kg at a power density of 30 W/kg. The SCs showed a capacitance retention of ∼97% after 10,000 galvanostatic charge/discharge (GCD) cycles, apparently due to a highly stable NiCo2O4 structure on the RVC network structure, which was ascertained by various characterization techniques after the GCD cycles. Further, the SC module, comprising three devices in series, successfully lights up an LED, demonstrating the energy storage capability of these electrodes in real applications. Owing to its excellent electrochemical performance, the NiCo2O4@RVC electrode offers a low-cost and efficient alternative material in energy storage applications.
doi_str_mv 10.1021/acsanm.3c05812
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsanm_3c05812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b660414618</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-e8069774bccc4b723cdf5e79428a29751e244b54c25940d821a7ddc193378c7d3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EElXpyuwZyeX5I3U8VoFSpKqtCLBGzrMLqdK4cpKBf09KOzDde5dzpUPIPYcpB8EfLba2OUwlQpJycUVGItGKgdFw_a_fkknb7gGAGz6TACPys66yIDaKrm0TGu9d7VkWbOcdlU_0zXcV9vXf_Ky66EPf0m2Ip8hsLENDF8Ee6C5Euqy-vtnWx6EfbIOezuua5aGuHMu7gUDz_ugj2qPFqguxvSM3O1u3fnLJMflYPL9nS7bavLxm8xWz3EDHfAozo7UqEVGVWkh0u8Rro0RqhdEJ90KpMlEoEqPApYJb7RxyI6VOUTs5Jg9n7qCo2Ic-NsNbwaE4eSvO3oqLN_kLCwxh7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yadav, Kaumudi ; Ovhal, Manoj Mayaji ; Parmar, Saurabh ; Gaikwad, Nishant ; Datar, Suwarna ; Kang, Jae-Wook ; Patro, T. Umasankar</creator><creatorcontrib>Yadav, Kaumudi ; Ovhal, Manoj Mayaji ; Parmar, Saurabh ; Gaikwad, Nishant ; Datar, Suwarna ; Kang, Jae-Wook ; Patro, T. Umasankar</creatorcontrib><description>A binder-free, electrically conducting nickel cobalt oxide (NiCo2O4)-reticulated vitreous carbon (RVC) foam (NiCo2O4@RVC) electrode was prepared by template carbonization of open-cell polyurethane foam followed by the hydrothermal growth of NiCo2O4 nanoneedles, leading to the formation of a hierarchical porous electrode. The growth of NiCo2O4 nanoneedles (length and diameter) on RVC foam was found to depend on hydrothermal coating time, which varied between 6 and 12 h. However, optimally grown NiCo2O4 nanoneedles for 8 h on an RVC foam with an average diameter of 77(±9) nm and length of ∼2 μm exhibited the lowest charge-transfer resistance, resulting in the areal capacitance (C a) of ∼2.45 F/cm2 at a scan rate of 5 mV/s. A symmetric supercapacitor (SC) device exhibited a maximum C a of 1.22 F/cm2 at a current density of 1 mA/cm2 and an energy density of 2.51 W h/kg at a power density of 30 W/kg. The SCs showed a capacitance retention of ∼97% after 10,000 galvanostatic charge/discharge (GCD) cycles, apparently due to a highly stable NiCo2O4 structure on the RVC network structure, which was ascertained by various characterization techniques after the GCD cycles. Further, the SC module, comprising three devices in series, successfully lights up an LED, demonstrating the energy storage capability of these electrodes in real applications. Owing to its excellent electrochemical performance, the NiCo2O4@RVC electrode offers a low-cost and efficient alternative material in energy storage applications.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c05812</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-01, Vol.7 (2), p.2312-2324</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9862-5863 ; 0000-0002-9513-0064 ; 0000-0002-1412-6179 ; 0000-0001-7601-647X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yadav, Kaumudi</creatorcontrib><creatorcontrib>Ovhal, Manoj Mayaji</creatorcontrib><creatorcontrib>Parmar, Saurabh</creatorcontrib><creatorcontrib>Gaikwad, Nishant</creatorcontrib><creatorcontrib>Datar, Suwarna</creatorcontrib><creatorcontrib>Kang, Jae-Wook</creatorcontrib><creatorcontrib>Patro, T. Umasankar</creatorcontrib><title>NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>A binder-free, electrically conducting nickel cobalt oxide (NiCo2O4)-reticulated vitreous carbon (RVC) foam (NiCo2O4@RVC) electrode was prepared by template carbonization of open-cell polyurethane foam followed by the hydrothermal growth of NiCo2O4 nanoneedles, leading to the formation of a hierarchical porous electrode. The growth of NiCo2O4 nanoneedles (length and diameter) on RVC foam was found to depend on hydrothermal coating time, which varied between 6 and 12 h. However, optimally grown NiCo2O4 nanoneedles for 8 h on an RVC foam with an average diameter of 77(±9) nm and length of ∼2 μm exhibited the lowest charge-transfer resistance, resulting in the areal capacitance (C a) of ∼2.45 F/cm2 at a scan rate of 5 mV/s. A symmetric supercapacitor (SC) device exhibited a maximum C a of 1.22 F/cm2 at a current density of 1 mA/cm2 and an energy density of 2.51 W h/kg at a power density of 30 W/kg. The SCs showed a capacitance retention of ∼97% after 10,000 galvanostatic charge/discharge (GCD) cycles, apparently due to a highly stable NiCo2O4 structure on the RVC network structure, which was ascertained by various characterization techniques after the GCD cycles. Further, the SC module, comprising three devices in series, successfully lights up an LED, demonstrating the energy storage capability of these electrodes in real applications. Owing to its excellent electrochemical performance, the NiCo2O4@RVC electrode offers a low-cost and efficient alternative material in energy storage applications.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkD1PwzAURS0EElXpyuwZyeX5I3U8VoFSpKqtCLBGzrMLqdK4cpKBf09KOzDde5dzpUPIPYcpB8EfLba2OUwlQpJycUVGItGKgdFw_a_fkknb7gGAGz6TACPys66yIDaKrm0TGu9d7VkWbOcdlU_0zXcV9vXf_Ky66EPf0m2Ip8hsLENDF8Ee6C5Euqy-vtnWx6EfbIOezuua5aGuHMu7gUDz_ugj2qPFqguxvSM3O1u3fnLJMflYPL9nS7bavLxm8xWz3EDHfAozo7UqEVGVWkh0u8Rro0RqhdEJ90KpMlEoEqPApYJb7RxyI6VOUTs5Jg9n7qCo2Ic-NsNbwaE4eSvO3oqLN_kLCwxh7Q</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Yadav, Kaumudi</creator><creator>Ovhal, Manoj Mayaji</creator><creator>Parmar, Saurabh</creator><creator>Gaikwad, Nishant</creator><creator>Datar, Suwarna</creator><creator>Kang, Jae-Wook</creator><creator>Patro, T. Umasankar</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9862-5863</orcidid><orcidid>https://orcid.org/0000-0002-9513-0064</orcidid><orcidid>https://orcid.org/0000-0002-1412-6179</orcidid><orcidid>https://orcid.org/0000-0001-7601-647X</orcidid></search><sort><creationdate>20240126</creationdate><title>NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors</title><author>Yadav, Kaumudi ; Ovhal, Manoj Mayaji ; Parmar, Saurabh ; Gaikwad, Nishant ; Datar, Suwarna ; Kang, Jae-Wook ; Patro, T. Umasankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-e8069774bccc4b723cdf5e79428a29751e244b54c25940d821a7ddc193378c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Kaumudi</creatorcontrib><creatorcontrib>Ovhal, Manoj Mayaji</creatorcontrib><creatorcontrib>Parmar, Saurabh</creatorcontrib><creatorcontrib>Gaikwad, Nishant</creatorcontrib><creatorcontrib>Datar, Suwarna</creatorcontrib><creatorcontrib>Kang, Jae-Wook</creatorcontrib><creatorcontrib>Patro, T. Umasankar</creatorcontrib><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Kaumudi</au><au>Ovhal, Manoj Mayaji</au><au>Parmar, Saurabh</au><au>Gaikwad, Nishant</au><au>Datar, Suwarna</au><au>Kang, Jae-Wook</au><au>Patro, T. Umasankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-01-26</date><risdate>2024</risdate><volume>7</volume><issue>2</issue><spage>2312</spage><epage>2324</epage><pages>2312-2324</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>A binder-free, electrically conducting nickel cobalt oxide (NiCo2O4)-reticulated vitreous carbon (RVC) foam (NiCo2O4@RVC) electrode was prepared by template carbonization of open-cell polyurethane foam followed by the hydrothermal growth of NiCo2O4 nanoneedles, leading to the formation of a hierarchical porous electrode. The growth of NiCo2O4 nanoneedles (length and diameter) on RVC foam was found to depend on hydrothermal coating time, which varied between 6 and 12 h. However, optimally grown NiCo2O4 nanoneedles for 8 h on an RVC foam with an average diameter of 77(±9) nm and length of ∼2 μm exhibited the lowest charge-transfer resistance, resulting in the areal capacitance (C a) of ∼2.45 F/cm2 at a scan rate of 5 mV/s. A symmetric supercapacitor (SC) device exhibited a maximum C a of 1.22 F/cm2 at a current density of 1 mA/cm2 and an energy density of 2.51 W h/kg at a power density of 30 W/kg. The SCs showed a capacitance retention of ∼97% after 10,000 galvanostatic charge/discharge (GCD) cycles, apparently due to a highly stable NiCo2O4 structure on the RVC network structure, which was ascertained by various characterization techniques after the GCD cycles. Further, the SC module, comprising three devices in series, successfully lights up an LED, demonstrating the energy storage capability of these electrodes in real applications. Owing to its excellent electrochemical performance, the NiCo2O4@RVC electrode offers a low-cost and efficient alternative material in energy storage applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c05812</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9862-5863</orcidid><orcidid>https://orcid.org/0000-0002-9513-0064</orcidid><orcidid>https://orcid.org/0000-0002-1412-6179</orcidid><orcidid>https://orcid.org/0000-0001-7601-647X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-01, Vol.7 (2), p.2312-2324
issn 2574-0970
2574-0970
language eng
recordid cdi_acs_journals_10_1021_acsanm_3c05812
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NiCo2O4%20Nanoneedle-Coated%203D%20Reticulated%20Vitreous%20Porous%20Carbon%20Foam%20for%20High-Performance%20All-Solid-State%20Supercapacitors&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Yadav,%20Kaumudi&rft.date=2024-01-26&rft.volume=7&rft.issue=2&rft.spage=2312&rft.epage=2324&rft.pages=2312-2324&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c05812&rft_dat=%3Cacs%3Eb660414618%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a190t-e8069774bccc4b723cdf5e79428a29751e244b54c25940d821a7ddc193378c7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true