Loading…

Photothermal Oxygen-Releasing IR780/CaO2 Nanoplatform for Enhanced and On-Demand Photodynamic Therapy

Tumor hypoxia is a major challenge in photodynamic therapy (PDT) of cancer because PDT efficacy strongly depends on oxygen availability. Here, we report the first fabrication of an on-demand oxygen-releasing solid lipid nanoplatform comprising IR780 and CaO2 nanoparticles (IRCa@SLN) with an average...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied nano materials 2024-10, Vol.7 (20), p.23627-23640
Main Authors: Rezaei Far, Hanie, Amiri, Mobina, Elyasigorji, Zahra, Heydari, Esmaeil, Saviz, Mehrdad, Faraji-Dana, Reza, Solouk, Atefeh, Moeini, Mohammad
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 23640
container_issue 20
container_start_page 23627
container_title ACS applied nano materials
container_volume 7
creator Rezaei Far, Hanie
Amiri, Mobina
Elyasigorji, Zahra
Heydari, Esmaeil
Saviz, Mehrdad
Faraji-Dana, Reza
Solouk, Atefeh
Moeini, Mohammad
description Tumor hypoxia is a major challenge in photodynamic therapy (PDT) of cancer because PDT efficacy strongly depends on oxygen availability. Here, we report the first fabrication of an on-demand oxygen-releasing solid lipid nanoplatform comprising IR780 and CaO2 nanoparticles (IRCa@SLN) with an average size of 94.5 ± 2.1 nm to enhance PDT efficacy. Low-power photothermal activation of IRCa@SLN by a 200 mW, 808 nm laser enabled on-demand CaO2 release. The laser-activated CaO2 locally generated oxygen and reactive oxygen species (ROS) through interaction with water, enhancing PDT efficacy, as confirmed by a photonic-based dissolved oxygen (DO) sensor based on time-resolved phosphorescence spectroscopy. Enhanced PDT was demonstrated using MDA-MB-231 cells, where IRCa@SLN (0.065 μg/mL IR780) exhibited 73.5 ± 9.8% reduction in cell viability and enhanced intracellular ROS generation compared to the control after 5 min of treatment with an 808 nm NIR laser at 40 mW/mm2. Without laser irradiation, there was no significant change in the intracellular ROS level and cell viability at this nanoparticle concentration. In contrast, IR780@SLN (nanoplatform without CaO2) showed no cell toxicity with or without laser irradiation at an equivalent IR780 concentration. These findings highlight the enhanced PDT effect due to CaO2 nanoparticles and light responsiveness of IRCa@SLN.
doi_str_mv 10.1021/acsanm.4c03929
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsanm_4c03929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b429557203</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-fad6c35b6da634b91a7fdffcc9046dc9a5aa522049584095055ea254ef0346b93</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNRuXc9aSHvnlXSWEqsWipFS1-FmHk1LMilJBPPvTW0Xbs45q-_AR8gjgzkDzhZoOgz1XBoQmusbMuEqkRHoBG7_7Xsy67ojADDNYgEwIe6zbPqmL11bY0Wzn2HvQrR1lcPuEPZ0vU2WsEgx4_QDQ3OqsPdNW9Mx6CqUGIyzFIOlWYheXH1ef0A7BKwPhu5GMJ6GB3Lnserc7NpT8vW62qXv0SZ7W6fPmwgZhz7yaGMjVBFbjIUsNMPEW--N0SBjazQqRMU5SK2WErQCpRxyJZ0HIeNCiyl5unBHHfmx-W7D-JYzyM-O8ouj_OpI_AIVlFtE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photothermal Oxygen-Releasing IR780/CaO2 Nanoplatform for Enhanced and On-Demand Photodynamic Therapy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Rezaei Far, Hanie ; Amiri, Mobina ; Elyasigorji, Zahra ; Heydari, Esmaeil ; Saviz, Mehrdad ; Faraji-Dana, Reza ; Solouk, Atefeh ; Moeini, Mohammad</creator><creatorcontrib>Rezaei Far, Hanie ; Amiri, Mobina ; Elyasigorji, Zahra ; Heydari, Esmaeil ; Saviz, Mehrdad ; Faraji-Dana, Reza ; Solouk, Atefeh ; Moeini, Mohammad</creatorcontrib><description>Tumor hypoxia is a major challenge in photodynamic therapy (PDT) of cancer because PDT efficacy strongly depends on oxygen availability. Here, we report the first fabrication of an on-demand oxygen-releasing solid lipid nanoplatform comprising IR780 and CaO2 nanoparticles (IRCa@SLN) with an average size of 94.5 ± 2.1 nm to enhance PDT efficacy. Low-power photothermal activation of IRCa@SLN by a 200 mW, 808 nm laser enabled on-demand CaO2 release. The laser-activated CaO2 locally generated oxygen and reactive oxygen species (ROS) through interaction with water, enhancing PDT efficacy, as confirmed by a photonic-based dissolved oxygen (DO) sensor based on time-resolved phosphorescence spectroscopy. Enhanced PDT was demonstrated using MDA-MB-231 cells, where IRCa@SLN (0.065 μg/mL IR780) exhibited 73.5 ± 9.8% reduction in cell viability and enhanced intracellular ROS generation compared to the control after 5 min of treatment with an 808 nm NIR laser at 40 mW/mm2. Without laser irradiation, there was no significant change in the intracellular ROS level and cell viability at this nanoparticle concentration. In contrast, IR780@SLN (nanoplatform without CaO2) showed no cell toxicity with or without laser irradiation at an equivalent IR780 concentration. These findings highlight the enhanced PDT effect due to CaO2 nanoparticles and light responsiveness of IRCa@SLN.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c03929</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-10, Vol.7 (20), p.23627-23640</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3628-5875 ; 0000-0002-7140-0699 ; 0000-0001-7620-8404 ; 0000-0002-1925-5834 ; 0000-0002-8742-1056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rezaei Far, Hanie</creatorcontrib><creatorcontrib>Amiri, Mobina</creatorcontrib><creatorcontrib>Elyasigorji, Zahra</creatorcontrib><creatorcontrib>Heydari, Esmaeil</creatorcontrib><creatorcontrib>Saviz, Mehrdad</creatorcontrib><creatorcontrib>Faraji-Dana, Reza</creatorcontrib><creatorcontrib>Solouk, Atefeh</creatorcontrib><creatorcontrib>Moeini, Mohammad</creatorcontrib><title>Photothermal Oxygen-Releasing IR780/CaO2 Nanoplatform for Enhanced and On-Demand Photodynamic Therapy</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Tumor hypoxia is a major challenge in photodynamic therapy (PDT) of cancer because PDT efficacy strongly depends on oxygen availability. Here, we report the first fabrication of an on-demand oxygen-releasing solid lipid nanoplatform comprising IR780 and CaO2 nanoparticles (IRCa@SLN) with an average size of 94.5 ± 2.1 nm to enhance PDT efficacy. Low-power photothermal activation of IRCa@SLN by a 200 mW, 808 nm laser enabled on-demand CaO2 release. The laser-activated CaO2 locally generated oxygen and reactive oxygen species (ROS) through interaction with water, enhancing PDT efficacy, as confirmed by a photonic-based dissolved oxygen (DO) sensor based on time-resolved phosphorescence spectroscopy. Enhanced PDT was demonstrated using MDA-MB-231 cells, where IRCa@SLN (0.065 μg/mL IR780) exhibited 73.5 ± 9.8% reduction in cell viability and enhanced intracellular ROS generation compared to the control after 5 min of treatment with an 808 nm NIR laser at 40 mW/mm2. Without laser irradiation, there was no significant change in the intracellular ROS level and cell viability at this nanoparticle concentration. In contrast, IR780@SLN (nanoplatform without CaO2) showed no cell toxicity with or without laser irradiation at an equivalent IR780 concentration. These findings highlight the enhanced PDT effect due to CaO2 nanoparticles and light responsiveness of IRCa@SLN.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEtLw0AUhQdRsNRuXc9aSHvnlXSWEqsWipFS1-FmHk1LMilJBPPvTW0Xbs45q-_AR8gjgzkDzhZoOgz1XBoQmusbMuEqkRHoBG7_7Xsy67ojADDNYgEwIe6zbPqmL11bY0Wzn2HvQrR1lcPuEPZ0vU2WsEgx4_QDQ3OqsPdNW9Mx6CqUGIyzFIOlWYheXH1ef0A7BKwPhu5GMJ6GB3Lnserc7NpT8vW62qXv0SZ7W6fPmwgZhz7yaGMjVBFbjIUsNMPEW--N0SBjazQqRMU5SK2WErQCpRxyJZ0HIeNCiyl5unBHHfmx-W7D-JYzyM-O8ouj_OpI_AIVlFtE</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Rezaei Far, Hanie</creator><creator>Amiri, Mobina</creator><creator>Elyasigorji, Zahra</creator><creator>Heydari, Esmaeil</creator><creator>Saviz, Mehrdad</creator><creator>Faraji-Dana, Reza</creator><creator>Solouk, Atefeh</creator><creator>Moeini, Mohammad</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-3628-5875</orcidid><orcidid>https://orcid.org/0000-0002-7140-0699</orcidid><orcidid>https://orcid.org/0000-0001-7620-8404</orcidid><orcidid>https://orcid.org/0000-0002-1925-5834</orcidid><orcidid>https://orcid.org/0000-0002-8742-1056</orcidid></search><sort><creationdate>20241025</creationdate><title>Photothermal Oxygen-Releasing IR780/CaO2 Nanoplatform for Enhanced and On-Demand Photodynamic Therapy</title><author>Rezaei Far, Hanie ; Amiri, Mobina ; Elyasigorji, Zahra ; Heydari, Esmaeil ; Saviz, Mehrdad ; Faraji-Dana, Reza ; Solouk, Atefeh ; Moeini, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-fad6c35b6da634b91a7fdffcc9046dc9a5aa522049584095055ea254ef0346b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaei Far, Hanie</creatorcontrib><creatorcontrib>Amiri, Mobina</creatorcontrib><creatorcontrib>Elyasigorji, Zahra</creatorcontrib><creatorcontrib>Heydari, Esmaeil</creatorcontrib><creatorcontrib>Saviz, Mehrdad</creatorcontrib><creatorcontrib>Faraji-Dana, Reza</creatorcontrib><creatorcontrib>Solouk, Atefeh</creatorcontrib><creatorcontrib>Moeini, Mohammad</creatorcontrib><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaei Far, Hanie</au><au>Amiri, Mobina</au><au>Elyasigorji, Zahra</au><au>Heydari, Esmaeil</au><au>Saviz, Mehrdad</au><au>Faraji-Dana, Reza</au><au>Solouk, Atefeh</au><au>Moeini, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photothermal Oxygen-Releasing IR780/CaO2 Nanoplatform for Enhanced and On-Demand Photodynamic Therapy</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>7</volume><issue>20</issue><spage>23627</spage><epage>23640</epage><pages>23627-23640</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Tumor hypoxia is a major challenge in photodynamic therapy (PDT) of cancer because PDT efficacy strongly depends on oxygen availability. Here, we report the first fabrication of an on-demand oxygen-releasing solid lipid nanoplatform comprising IR780 and CaO2 nanoparticles (IRCa@SLN) with an average size of 94.5 ± 2.1 nm to enhance PDT efficacy. Low-power photothermal activation of IRCa@SLN by a 200 mW, 808 nm laser enabled on-demand CaO2 release. The laser-activated CaO2 locally generated oxygen and reactive oxygen species (ROS) through interaction with water, enhancing PDT efficacy, as confirmed by a photonic-based dissolved oxygen (DO) sensor based on time-resolved phosphorescence spectroscopy. Enhanced PDT was demonstrated using MDA-MB-231 cells, where IRCa@SLN (0.065 μg/mL IR780) exhibited 73.5 ± 9.8% reduction in cell viability and enhanced intracellular ROS generation compared to the control after 5 min of treatment with an 808 nm NIR laser at 40 mW/mm2. Without laser irradiation, there was no significant change in the intracellular ROS level and cell viability at this nanoparticle concentration. In contrast, IR780@SLN (nanoplatform without CaO2) showed no cell toxicity with or without laser irradiation at an equivalent IR780 concentration. These findings highlight the enhanced PDT effect due to CaO2 nanoparticles and light responsiveness of IRCa@SLN.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c03929</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3628-5875</orcidid><orcidid>https://orcid.org/0000-0002-7140-0699</orcidid><orcidid>https://orcid.org/0000-0001-7620-8404</orcidid><orcidid>https://orcid.org/0000-0002-1925-5834</orcidid><orcidid>https://orcid.org/0000-0002-8742-1056</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-10, Vol.7 (20), p.23627-23640
issn 2574-0970
2574-0970
language eng
recordid cdi_acs_journals_10_1021_acsanm_4c03929
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Photothermal Oxygen-Releasing IR780/CaO2 Nanoplatform for Enhanced and On-Demand Photodynamic Therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photothermal%20Oxygen-Releasing%20IR780/CaO2%20Nanoplatform%20for%20Enhanced%20and%20On-Demand%20Photodynamic%20Therapy&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Rezaei%20Far,%20Hanie&rft.date=2024-10-25&rft.volume=7&rft.issue=20&rft.spage=23627&rft.epage=23640&rft.pages=23627-23640&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c03929&rft_dat=%3Cacs%3Eb429557203%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a120t-fad6c35b6da634b91a7fdffcc9046dc9a5aa522049584095055ea254ef0346b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true