Loading…
Environmentally Sustainable Fabrication of Ag@g‑C3N4 Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts
Noble-metal silver (Ag) nanoparticles (NPs) anchored/decorated onto polymeric graphitic carbon nitride (g-C3N4) as nanostructures (NSs) were prepared using modest and environment-friendly synthesis method with a developed-single-strain biofilm as a reducing implement. The as-fabricated NSs were char...
Saved in:
Published in: | ACS applied nano materials 2018-06, Vol.1 (6), p.2912-2922 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Noble-metal silver (Ag) nanoparticles (NPs) anchored/decorated onto polymeric graphitic carbon nitride (g-C3N4) as nanostructures (NSs) were prepared using modest and environment-friendly synthesis method with a developed-single-strain biofilm as a reducing implement. The as-fabricated NSs were characterized using standard characterization techniques. The nanosized and uniform AgNPs were well deposited onto the sheet-like matrix of g-C3N4 and exhibited good antimicrobial activity and superior photodegradation of dyes methylene blue (MB) and rhodamine B (RhB) dyes under visible-light illumination. The Ag@g-C3N4 NSs exhibited active and effective bactericidal performance and a survival test in counter to Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The as-fabricated NSs also exhibited superior visible-light photodegradation of MB and RhB in much less time as compared to other reports. Ag@g-C3N4 NSs (3 mM) showed superior photocatalytic measurements under visible-light irradiation: ∼100% MB degradation and ∼89% of RhB degradation in 210 and 250 min, respectively. The obtained results indicate that the AgNPs were well deposited onto the g-C3N4 structure, which decreases the charge recombination rate of photogenerated electrons and holes and extends the performance of pure g-C3N4 under visible light. In conclusion, the as-fabricated Ag@g-C3N4 NSs are keen nanostructured materials that can be applied as antimicrobial materials and visible-light-induced photocatalysts. |
---|---|
ISSN: | 2574-0970 2574-0970 |
DOI: | 10.1021/acsanm.8b00548 |