Loading…
Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals
Colloidal CsPbX3 (X = Cl, Br, and I) nanocrystals have recently emerged as preferred materials for light-emitting diodes, along with opportunities for photovoltaic applications. Such applications rely on the nature of valence and conduction band edges and optical transitions across these edges. Here...
Saved in:
Published in: | ACS energy letters 2016-10, Vol.1 (4), p.665-671 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colloidal CsPbX3 (X = Cl, Br, and I) nanocrystals have recently emerged as preferred materials for light-emitting diodes, along with opportunities for photovoltaic applications. Such applications rely on the nature of valence and conduction band edges and optical transitions across these edges. Here we elucidate how halide compositions control both of these correlated parameters of CsPbX3 nanocrystals. Cyclic voltammetry shows that the valence band maximum (VBM) shifts significantly to higher energies by 0.80 eV, from X = Cl to Br to I, whereas the shift in the conduction band minimum (CBM) is small (0.19 eV) but systematic. Halides contribute more to the VBM, but their contribution to the CBM is also not negligible. Excitonic transition probabilities for both absorption and emission of visible light decrease probably because of the increasing dielectric constant from X = Cl to Br to I. These band edge properties will help design suitable interfaces in both devices and heterostructured nanocrystals. |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.6b00337 |