Loading…

High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors

Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivit...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2018-04, Vol.12 (4), p.3557-3567
Main Authors: Huang, Zi-Hang, Song, Yu, Feng, Dong-Yang, Sun, Zhen, Sun, Xiaoqi, Liu, Xiao-Xia
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3567
container_issue 4
container_start_page 3557
container_title ACS nano
container_volume 12
creator Huang, Zi-Hang
Song, Yu
Feng, Dong-Yang
Sun, Zhen
Sun, Xiaoqi
Liu, Xiao-Xia
description Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO2 with ultrahigh mass loading of 10 mg cm–2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO2 nanosheets and secondary one-dimensional α-MnO2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm–2 (or a specific capacitance of 304 F g–1) at 3 mA cm–2 and an excellent rate capability comparable to those of low mass loading MnO2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm–3 at the power density of 0.28 W cm–3 for aqueous ASC and 8.0 mWh cm–3 at 0.65 W cm–3 for all-solid ASC), superior to most state-of-the-art supercapacitors.
doi_str_mv 10.1021/acsnano.8b00621
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsnano_8b00621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c272365665</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-ef57ce84770d73125103b91f80c3f090e86da5e4c4eae979587129ea5b2a3e563</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqUws3pHKc92_DWiCggipQMgsUUvjtO4qpLKTsTfJ4iK6d7pXN1DyC2DFQPO7tGlHvthZWoAxdkZWTArVAZGfZ3_d8kuyVVKewCpjVYL8lqEXUc3mBItB2xCv6Obfsvpdxg7WgQfMbouODzQtxmexji5cYo-0XaI9H06-ujwiC6MQ0zX5KLFQ_I3p1ySz6fHj3WRldvnl_VDmSHn-Zj5VmrnTa41NFowLhmI2rLWgBMtWPBGNSh97nKP3morjWbcepQ1R-GlEkty98edL1f7YYr9vFYxqH49VCcP1cmD-AGGkVKv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Huang, Zi-Hang ; Song, Yu ; Feng, Dong-Yang ; Sun, Zhen ; Sun, Xiaoqi ; Liu, Xiao-Xia</creator><creatorcontrib>Huang, Zi-Hang ; Song, Yu ; Feng, Dong-Yang ; Sun, Zhen ; Sun, Xiaoqi ; Liu, Xiao-Xia</creatorcontrib><description>Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO2 with ultrahigh mass loading of 10 mg cm–2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO2 nanosheets and secondary one-dimensional α-MnO2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm–2 (or a specific capacitance of 304 F g–1) at 3 mA cm–2 and an excellent rate capability comparable to those of low mass loading MnO2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm–3 at the power density of 0.28 W cm–3 for aqueous ASC and 8.0 mWh cm–3 at 0.65 W cm–3 for all-solid ASC), superior to most state-of-the-art supercapacitors.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b00621</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2018-04, Vol.12 (4), p.3557-3567</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0172-5826 ; 0000-0003-2324-7631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Huang, Zi-Hang</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Feng, Dong-Yang</creatorcontrib><creatorcontrib>Sun, Zhen</creatorcontrib><creatorcontrib>Sun, Xiaoqi</creatorcontrib><creatorcontrib>Liu, Xiao-Xia</creatorcontrib><title>High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO2 with ultrahigh mass loading of 10 mg cm–2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO2 nanosheets and secondary one-dimensional α-MnO2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm–2 (or a specific capacitance of 304 F g–1) at 3 mA cm–2 and an excellent rate capability comparable to those of low mass loading MnO2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm–3 at the power density of 0.28 W cm–3 for aqueous ASC and 8.0 mWh cm–3 at 0.65 W cm–3 for all-solid ASC), superior to most state-of-the-art supercapacitors.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kD1PwzAURS0EEqUws3pHKc92_DWiCggipQMgsUUvjtO4qpLKTsTfJ4iK6d7pXN1DyC2DFQPO7tGlHvthZWoAxdkZWTArVAZGfZ3_d8kuyVVKewCpjVYL8lqEXUc3mBItB2xCv6Obfsvpdxg7WgQfMbouODzQtxmexji5cYo-0XaI9H06-ujwiC6MQ0zX5KLFQ_I3p1ySz6fHj3WRldvnl_VDmSHn-Zj5VmrnTa41NFowLhmI2rLWgBMtWPBGNSh97nKP3morjWbcepQ1R-GlEkty98edL1f7YYr9vFYxqH49VCcP1cmD-AGGkVKv</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Huang, Zi-Hang</creator><creator>Song, Yu</creator><creator>Feng, Dong-Yang</creator><creator>Sun, Zhen</creator><creator>Sun, Xiaoqi</creator><creator>Liu, Xiao-Xia</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-0172-5826</orcidid><orcidid>https://orcid.org/0000-0003-2324-7631</orcidid></search><sort><creationdate>20180424</creationdate><title>High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors</title><author>Huang, Zi-Hang ; Song, Yu ; Feng, Dong-Yang ; Sun, Zhen ; Sun, Xiaoqi ; Liu, Xiao-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-ef57ce84770d73125103b91f80c3f090e86da5e4c4eae979587129ea5b2a3e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zi-Hang</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Feng, Dong-Yang</creatorcontrib><creatorcontrib>Sun, Zhen</creatorcontrib><creatorcontrib>Sun, Xiaoqi</creatorcontrib><creatorcontrib>Liu, Xiao-Xia</creatorcontrib><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zi-Hang</au><au>Song, Yu</au><au>Feng, Dong-Yang</au><au>Sun, Zhen</au><au>Sun, Xiaoqi</au><au>Liu, Xiao-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>12</volume><issue>4</issue><spage>3557</spage><epage>3567</epage><pages>3557-3567</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO2 with ultrahigh mass loading of 10 mg cm–2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO2 nanosheets and secondary one-dimensional α-MnO2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm–2 (or a specific capacitance of 304 F g–1) at 3 mA cm–2 and an excellent rate capability comparable to those of low mass loading MnO2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm–3 at the power density of 0.28 W cm–3 for aqueous ASC and 8.0 mWh cm–3 at 0.65 W cm–3 for all-solid ASC), superior to most state-of-the-art supercapacitors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b00621</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0172-5826</orcidid><orcidid>https://orcid.org/0000-0003-2324-7631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-04, Vol.12 (4), p.3557-3567
issn 1936-0851
1936-086X
language eng
recordid cdi_acs_journals_10_1021_acsnano_8b00621
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Mass%20Loading%20MnO2%20with%20Hierarchical%20Nanostructures%20for%20Supercapacitors&rft.jtitle=ACS%20nano&rft.au=Huang,%20Zi-Hang&rft.date=2018-04-24&rft.volume=12&rft.issue=4&rft.spage=3557&rft.epage=3567&rft.pages=3557-3567&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b00621&rft_dat=%3Cacs%3Ec272365665%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a224t-ef57ce84770d73125103b91f80c3f090e86da5e4c4eae979587129ea5b2a3e563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true