Loading…

Enhancing Extracellular Electron Transfer of Geobacter sulfurreducens in Bioelectrochemical Systems Using N‑Doped Fe3O4@Carbon Dots

A nanomaterial–living cell biohybrid system is an efficient energy conversion method due to enhanced interactions between inorganic materials and bacteria. However, inefficient electron transfer at the interface of the biohybrid remains as a limiting factor. Herein, an inorganic–biologic hybrid was...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2022-03, Vol.10 (12), p.3935-3950
Main Authors: Cheng, Jun, Xia, Rongxin, Li, Hui, Chen, Zhuo, Zhou, Xinyi, Ren, Xingyu, Dong, Haiquan, Lin, Richen, Zhou, Junhu
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3950
container_issue 12
container_start_page 3935
container_title ACS sustainable chemistry & engineering
container_volume 10
creator Cheng, Jun
Xia, Rongxin
Li, Hui
Chen, Zhuo
Zhou, Xinyi
Ren, Xingyu
Dong, Haiquan
Lin, Richen
Zhou, Junhu
description A nanomaterial–living cell biohybrid system is an efficient energy conversion method due to enhanced interactions between inorganic materials and bacteria. However, inefficient electron transfer at the interface of the biohybrid remains as a limiting factor. Herein, an inorganic–biologic hybrid was proposed by combining a typical electroactive bacterium, Geobacter sulfurreducens, and a highly conductive N-doped Fe3O4 with a carbon dot shell (Fe3O4@CD) to boost energy conversion in bioelectrochemical systems (including microbial electrolytic cells and electro-methanogenesis). One-pot-synthesized Fe3O4@CDs enhanced extracellular electron transfer in the biohybrid system by forming an interaction network with conductive proteins inside and outside G. sulfurreducens. In the microbial electrolytic cell, the maximum current of Fe3O4@CDs-fed cells was 6.37 times higher than that of the control group without nanoparticle addition. This enhanced performance was accompanied with higher bioactivity, higher cellular adhesion, and lower biofilm resistance. The G. sulfurreducens–Fe3O4@CDs biohybrids supplemented during electro-methanogenesis remained stable on anodes, which promoted microbial syntrophy. The metabolic methanogenesis pathways are strongly related to the electron transfer ability of G. sulfurreducens, which demonstrates a new strategy to promote extracellular electron transfer through the constructed biohybrid system.
doi_str_mv 10.1021/acssuschemeng.1c08167
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_1c08167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c088233894</sourcerecordid><originalsourceid>FETCH-LOGICAL-a127t-f2fa36b6e2d912220480034f90858ecdce44a93cfbae5a4058fa0c87ceaf95e53</originalsourceid><addsrcrecordid>eNpVkM1OwzAMgCMEEtPYIyDlBTqS9GfpDdi6gTSxA9u5clNn65QlKGkluHHhAXhFnoRO2wF8sX3wZ_sj5JazMWeC34EKoQtqhwe02zFXTPJsckEGgmcyYolML__U12QUwp71keexkHxAvgq7A6sau6XFe-tBoTGdAU8Lg6r1ztK1Bxs0euo0XaCrQLV9EzqjO--x7hTaQBtLHxuHp5njMY0CQ18_QouHQDfhyH_5-fyeuTes6RzjVXI_BV_1_Jlrww250mACjs55SDbzYj19iparxfP0YRkBF5M20kJDnFUZijrnQoj-JcbiROdMphJVrTBJII-VrgBTSFgqNTAlJwpB5ymm8ZDwE7e3Vu5d522_reSsPKos_6kszyrjXwJ6b5E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Extracellular Electron Transfer of Geobacter sulfurreducens in Bioelectrochemical Systems Using N‑Doped Fe3O4@Carbon Dots</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cheng, Jun ; Xia, Rongxin ; Li, Hui ; Chen, Zhuo ; Zhou, Xinyi ; Ren, Xingyu ; Dong, Haiquan ; Lin, Richen ; Zhou, Junhu</creator><creatorcontrib>Cheng, Jun ; Xia, Rongxin ; Li, Hui ; Chen, Zhuo ; Zhou, Xinyi ; Ren, Xingyu ; Dong, Haiquan ; Lin, Richen ; Zhou, Junhu</creatorcontrib><description>A nanomaterial–living cell biohybrid system is an efficient energy conversion method due to enhanced interactions between inorganic materials and bacteria. However, inefficient electron transfer at the interface of the biohybrid remains as a limiting factor. Herein, an inorganic–biologic hybrid was proposed by combining a typical electroactive bacterium, Geobacter sulfurreducens, and a highly conductive N-doped Fe3O4 with a carbon dot shell (Fe3O4@CD) to boost energy conversion in bioelectrochemical systems (including microbial electrolytic cells and electro-methanogenesis). One-pot-synthesized Fe3O4@CDs enhanced extracellular electron transfer in the biohybrid system by forming an interaction network with conductive proteins inside and outside G. sulfurreducens. In the microbial electrolytic cell, the maximum current of Fe3O4@CDs-fed cells was 6.37 times higher than that of the control group without nanoparticle addition. This enhanced performance was accompanied with higher bioactivity, higher cellular adhesion, and lower biofilm resistance. The G. sulfurreducens–Fe3O4@CDs biohybrids supplemented during electro-methanogenesis remained stable on anodes, which promoted microbial syntrophy. The metabolic methanogenesis pathways are strongly related to the electron transfer ability of G. sulfurreducens, which demonstrates a new strategy to promote extracellular electron transfer through the constructed biohybrid system.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.1c08167</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2022-03, Vol.10 (12), p.3935-3950</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6861-8542 ; 0000-0003-1104-671X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Xia, Rongxin</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhou, Xinyi</creatorcontrib><creatorcontrib>Ren, Xingyu</creatorcontrib><creatorcontrib>Dong, Haiquan</creatorcontrib><creatorcontrib>Lin, Richen</creatorcontrib><creatorcontrib>Zhou, Junhu</creatorcontrib><title>Enhancing Extracellular Electron Transfer of Geobacter sulfurreducens in Bioelectrochemical Systems Using N‑Doped Fe3O4@Carbon Dots</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>A nanomaterial–living cell biohybrid system is an efficient energy conversion method due to enhanced interactions between inorganic materials and bacteria. However, inefficient electron transfer at the interface of the biohybrid remains as a limiting factor. Herein, an inorganic–biologic hybrid was proposed by combining a typical electroactive bacterium, Geobacter sulfurreducens, and a highly conductive N-doped Fe3O4 with a carbon dot shell (Fe3O4@CD) to boost energy conversion in bioelectrochemical systems (including microbial electrolytic cells and electro-methanogenesis). One-pot-synthesized Fe3O4@CDs enhanced extracellular electron transfer in the biohybrid system by forming an interaction network with conductive proteins inside and outside G. sulfurreducens. In the microbial electrolytic cell, the maximum current of Fe3O4@CDs-fed cells was 6.37 times higher than that of the control group without nanoparticle addition. This enhanced performance was accompanied with higher bioactivity, higher cellular adhesion, and lower biofilm resistance. The G. sulfurreducens–Fe3O4@CDs biohybrids supplemented during electro-methanogenesis remained stable on anodes, which promoted microbial syntrophy. The metabolic methanogenesis pathways are strongly related to the electron transfer ability of G. sulfurreducens, which demonstrates a new strategy to promote extracellular electron transfer through the constructed biohybrid system.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkM1OwzAMgCMEEtPYIyDlBTqS9GfpDdi6gTSxA9u5clNn65QlKGkluHHhAXhFnoRO2wF8sX3wZ_sj5JazMWeC34EKoQtqhwe02zFXTPJsckEGgmcyYolML__U12QUwp71keexkHxAvgq7A6sau6XFe-tBoTGdAU8Lg6r1ztK1Bxs0euo0XaCrQLV9EzqjO--x7hTaQBtLHxuHp5njMY0CQ18_QouHQDfhyH_5-fyeuTes6RzjVXI_BV_1_Jlrww250mACjs55SDbzYj19iparxfP0YRkBF5M20kJDnFUZijrnQoj-JcbiROdMphJVrTBJII-VrgBTSFgqNTAlJwpB5ymm8ZDwE7e3Vu5d522_reSsPKos_6kszyrjXwJ6b5E</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Cheng, Jun</creator><creator>Xia, Rongxin</creator><creator>Li, Hui</creator><creator>Chen, Zhuo</creator><creator>Zhou, Xinyi</creator><creator>Ren, Xingyu</creator><creator>Dong, Haiquan</creator><creator>Lin, Richen</creator><creator>Zhou, Junhu</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-6861-8542</orcidid><orcidid>https://orcid.org/0000-0003-1104-671X</orcidid></search><sort><creationdate>20220328</creationdate><title>Enhancing Extracellular Electron Transfer of Geobacter sulfurreducens in Bioelectrochemical Systems Using N‑Doped Fe3O4@Carbon Dots</title><author>Cheng, Jun ; Xia, Rongxin ; Li, Hui ; Chen, Zhuo ; Zhou, Xinyi ; Ren, Xingyu ; Dong, Haiquan ; Lin, Richen ; Zhou, Junhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a127t-f2fa36b6e2d912220480034f90858ecdce44a93cfbae5a4058fa0c87ceaf95e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Xia, Rongxin</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhou, Xinyi</creatorcontrib><creatorcontrib>Ren, Xingyu</creatorcontrib><creatorcontrib>Dong, Haiquan</creatorcontrib><creatorcontrib>Lin, Richen</creatorcontrib><creatorcontrib>Zhou, Junhu</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Jun</au><au>Xia, Rongxin</au><au>Li, Hui</au><au>Chen, Zhuo</au><au>Zhou, Xinyi</au><au>Ren, Xingyu</au><au>Dong, Haiquan</au><au>Lin, Richen</au><au>Zhou, Junhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Extracellular Electron Transfer of Geobacter sulfurreducens in Bioelectrochemical Systems Using N‑Doped Fe3O4@Carbon Dots</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2022-03-28</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><spage>3935</spage><epage>3950</epage><pages>3935-3950</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>A nanomaterial–living cell biohybrid system is an efficient energy conversion method due to enhanced interactions between inorganic materials and bacteria. However, inefficient electron transfer at the interface of the biohybrid remains as a limiting factor. Herein, an inorganic–biologic hybrid was proposed by combining a typical electroactive bacterium, Geobacter sulfurreducens, and a highly conductive N-doped Fe3O4 with a carbon dot shell (Fe3O4@CD) to boost energy conversion in bioelectrochemical systems (including microbial electrolytic cells and electro-methanogenesis). One-pot-synthesized Fe3O4@CDs enhanced extracellular electron transfer in the biohybrid system by forming an interaction network with conductive proteins inside and outside G. sulfurreducens. In the microbial electrolytic cell, the maximum current of Fe3O4@CDs-fed cells was 6.37 times higher than that of the control group without nanoparticle addition. This enhanced performance was accompanied with higher bioactivity, higher cellular adhesion, and lower biofilm resistance. The G. sulfurreducens–Fe3O4@CDs biohybrids supplemented during electro-methanogenesis remained stable on anodes, which promoted microbial syntrophy. The metabolic methanogenesis pathways are strongly related to the electron transfer ability of G. sulfurreducens, which demonstrates a new strategy to promote extracellular electron transfer through the constructed biohybrid system.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.1c08167</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6861-8542</orcidid><orcidid>https://orcid.org/0000-0003-1104-671X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2022-03, Vol.10 (12), p.3935-3950
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_1c08167
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Enhancing Extracellular Electron Transfer of Geobacter sulfurreducens in Bioelectrochemical Systems Using N‑Doped Fe3O4@Carbon Dots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Extracellular%20Electron%20Transfer%20of%20Geobacter%20sulfurreducens%20in%20Bioelectrochemical%20Systems%20Using%20N%E2%80%91Doped%20Fe3O4@Carbon%20Dots&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Cheng,%20Jun&rft.date=2022-03-28&rft.volume=10&rft.issue=12&rft.spage=3935&rft.epage=3950&rft.pages=3935-3950&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.1c08167&rft_dat=%3Cacs%3Ec088233894%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a127t-f2fa36b6e2d912220480034f90858ecdce44a93cfbae5a4058fa0c87ceaf95e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true