Loading…

Probing Supercritical CO2 to Improve the Susceptibility of Semicrystalline Polyethylene Terephthalate to Enzymatic Hydrolysis

Enzymatic hydrolysis of semicrystalline poly­(ethylene terephthalate) (PET) is hindered by the hydrophobic nature and crystallinity of the substrate, and it highly depends on the available interfacial area between substrate and aqueous phase. While most studies leverage particle size reduction to in...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2024-05, Vol.12 (20), p.7713-7723
Main Authors: Gurrala, Lakshmiprasad, Anowar, Rafi, Morais, Ana Rita C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7723
container_issue 20
container_start_page 7713
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Gurrala, Lakshmiprasad
Anowar, Rafi
Morais, Ana Rita C.
description Enzymatic hydrolysis of semicrystalline poly­(ethylene terephthalate) (PET) is hindered by the hydrophobic nature and crystallinity of the substrate, and it highly depends on the available interfacial area between substrate and aqueous phase. While most studies leverage particle size reduction to increase interfacial area, this study investigates the use of supercritical CO2 (scCO2) to increase internal surface area in PET, and its impact on the enzymatic hydrolysis yields. Our work shows that scCO2 pretreatment of semicrystalline PET resulted in up to 2-fold higher terephthalic acid (TPA) yield relative to the untreated counterpart using Humicola insolens cutinase (HiC) enzyme. There is a positive correlation between the total pore surface area in the scCO2-pretreated PET samples and the final TPA yield. In addition, preliminary kinetic studies revealed faster initial production of TPA for scCO2-treated PET relative to untreated PET. ScCO2-treated PET samples showed no significant changes in the crystalline content and thermal properties. However, NMR data indicated that scCO2-treated PET has a slightly higher apparent number-average molecular weight (M n) relative to that of untreated PET. Overall, scCO2 pretreatment led to increased semicrystalline PET susceptibility to HiC enzyme action, resulting in increased TPA yields.
doi_str_mv 10.1021/acssuschemeng.3c08286
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_3c08286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153629087</sourcerecordid><originalsourceid>FETCH-LOGICAL-a230t-415c20fa735617f8568f011e69e3a5ac5b2120af25724a841f6f57e0a08f6a3f3</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWGp_gpCjl6352OymRynVFgottJ6XNE66KdkPN1lhBf-7Ke1B5zIz8PAy8yD0SMmUEkaflfa-97qECurjlGsimcxu0IjRTCYkleL2z3yPJt6fSKzZjDNJR-hn2zUHWx_xrm-h050NViuH5xuGQ4NXVds1X4BDCRHwGtpgD9bZMODG4B1UVneDD8o5WwPeNm6AUA4O4rKHDtoylMqpAOesRf09VCrG4-Xw0UXUW_-A7oxyHibXPkbvr4v9fJmsN2-r-cs6UYyTkKRUaEaMyrnIaG6kyKQhlEI2A66E0uLAKCPKMJGzVMmUmsyIHIgi0mSKGz5GT5fc-M5nDz4UlY3fOKdqaHpfcCp4xmZE5hGlFzSKLU5N39XxsIKS4my7-Ge7uNrmvyJQeY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153629087</pqid></control><display><type>article</type><title>Probing Supercritical CO2 to Improve the Susceptibility of Semicrystalline Polyethylene Terephthalate to Enzymatic Hydrolysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gurrala, Lakshmiprasad ; Anowar, Rafi ; Morais, Ana Rita C.</creator><creatorcontrib>Gurrala, Lakshmiprasad ; Anowar, Rafi ; Morais, Ana Rita C.</creatorcontrib><description>Enzymatic hydrolysis of semicrystalline poly­(ethylene terephthalate) (PET) is hindered by the hydrophobic nature and crystallinity of the substrate, and it highly depends on the available interfacial area between substrate and aqueous phase. While most studies leverage particle size reduction to increase interfacial area, this study investigates the use of supercritical CO2 (scCO2) to increase internal surface area in PET, and its impact on the enzymatic hydrolysis yields. Our work shows that scCO2 pretreatment of semicrystalline PET resulted in up to 2-fold higher terephthalic acid (TPA) yield relative to the untreated counterpart using Humicola insolens cutinase (HiC) enzyme. There is a positive correlation between the total pore surface area in the scCO2-pretreated PET samples and the final TPA yield. In addition, preliminary kinetic studies revealed faster initial production of TPA for scCO2-treated PET relative to untreated PET. ScCO2-treated PET samples showed no significant changes in the crystalline content and thermal properties. However, NMR data indicated that scCO2-treated PET has a slightly higher apparent number-average molecular weight (M n) relative to that of untreated PET. Overall, scCO2 pretreatment led to increased semicrystalline PET susceptibility to HiC enzyme action, resulting in increased TPA yields.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.3c08286</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon dioxide ; crystal structure ; cutinase ; enzymatic hydrolysis ; green chemistry ; Humicola insolens ; hydrophobicity ; molecular weight ; particle size ; polyethylene terephthalates ; surface area</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2024-05, Vol.12 (20), p.7713-7723</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3216-1533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gurrala, Lakshmiprasad</creatorcontrib><creatorcontrib>Anowar, Rafi</creatorcontrib><creatorcontrib>Morais, Ana Rita C.</creatorcontrib><title>Probing Supercritical CO2 to Improve the Susceptibility of Semicrystalline Polyethylene Terephthalate to Enzymatic Hydrolysis</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Enzymatic hydrolysis of semicrystalline poly­(ethylene terephthalate) (PET) is hindered by the hydrophobic nature and crystallinity of the substrate, and it highly depends on the available interfacial area between substrate and aqueous phase. While most studies leverage particle size reduction to increase interfacial area, this study investigates the use of supercritical CO2 (scCO2) to increase internal surface area in PET, and its impact on the enzymatic hydrolysis yields. Our work shows that scCO2 pretreatment of semicrystalline PET resulted in up to 2-fold higher terephthalic acid (TPA) yield relative to the untreated counterpart using Humicola insolens cutinase (HiC) enzyme. There is a positive correlation between the total pore surface area in the scCO2-pretreated PET samples and the final TPA yield. In addition, preliminary kinetic studies revealed faster initial production of TPA for scCO2-treated PET relative to untreated PET. ScCO2-treated PET samples showed no significant changes in the crystalline content and thermal properties. However, NMR data indicated that scCO2-treated PET has a slightly higher apparent number-average molecular weight (M n) relative to that of untreated PET. Overall, scCO2 pretreatment led to increased semicrystalline PET susceptibility to HiC enzyme action, resulting in increased TPA yields.</description><subject>carbon dioxide</subject><subject>crystal structure</subject><subject>cutinase</subject><subject>enzymatic hydrolysis</subject><subject>green chemistry</subject><subject>Humicola insolens</subject><subject>hydrophobicity</subject><subject>molecular weight</subject><subject>particle size</subject><subject>polyethylene terephthalates</subject><subject>surface area</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEQhoMoWGp_gpCjl6352OymRynVFgottJ6XNE66KdkPN1lhBf-7Ke1B5zIz8PAy8yD0SMmUEkaflfa-97qECurjlGsimcxu0IjRTCYkleL2z3yPJt6fSKzZjDNJR-hn2zUHWx_xrm-h050NViuH5xuGQ4NXVds1X4BDCRHwGtpgD9bZMODG4B1UVneDD8o5WwPeNm6AUA4O4rKHDtoylMqpAOesRf09VCrG4-Xw0UXUW_-A7oxyHibXPkbvr4v9fJmsN2-r-cs6UYyTkKRUaEaMyrnIaG6kyKQhlEI2A66E0uLAKCPKMJGzVMmUmsyIHIgi0mSKGz5GT5fc-M5nDz4UlY3fOKdqaHpfcCp4xmZE5hGlFzSKLU5N39XxsIKS4my7-Ge7uNrmvyJQeY4</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Gurrala, Lakshmiprasad</creator><creator>Anowar, Rafi</creator><creator>Morais, Ana Rita C.</creator><general>American Chemical Society</general><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3216-1533</orcidid></search><sort><creationdate>20240520</creationdate><title>Probing Supercritical CO2 to Improve the Susceptibility of Semicrystalline Polyethylene Terephthalate to Enzymatic Hydrolysis</title><author>Gurrala, Lakshmiprasad ; Anowar, Rafi ; Morais, Ana Rita C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a230t-415c20fa735617f8568f011e69e3a5ac5b2120af25724a841f6f57e0a08f6a3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>carbon dioxide</topic><topic>crystal structure</topic><topic>cutinase</topic><topic>enzymatic hydrolysis</topic><topic>green chemistry</topic><topic>Humicola insolens</topic><topic>hydrophobicity</topic><topic>molecular weight</topic><topic>particle size</topic><topic>polyethylene terephthalates</topic><topic>surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurrala, Lakshmiprasad</creatorcontrib><creatorcontrib>Anowar, Rafi</creatorcontrib><creatorcontrib>Morais, Ana Rita C.</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurrala, Lakshmiprasad</au><au>Anowar, Rafi</au><au>Morais, Ana Rita C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Supercritical CO2 to Improve the Susceptibility of Semicrystalline Polyethylene Terephthalate to Enzymatic Hydrolysis</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-05-20</date><risdate>2024</risdate><volume>12</volume><issue>20</issue><spage>7713</spage><epage>7723</epage><pages>7713-7723</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Enzymatic hydrolysis of semicrystalline poly­(ethylene terephthalate) (PET) is hindered by the hydrophobic nature and crystallinity of the substrate, and it highly depends on the available interfacial area between substrate and aqueous phase. While most studies leverage particle size reduction to increase interfacial area, this study investigates the use of supercritical CO2 (scCO2) to increase internal surface area in PET, and its impact on the enzymatic hydrolysis yields. Our work shows that scCO2 pretreatment of semicrystalline PET resulted in up to 2-fold higher terephthalic acid (TPA) yield relative to the untreated counterpart using Humicola insolens cutinase (HiC) enzyme. There is a positive correlation between the total pore surface area in the scCO2-pretreated PET samples and the final TPA yield. In addition, preliminary kinetic studies revealed faster initial production of TPA for scCO2-treated PET relative to untreated PET. ScCO2-treated PET samples showed no significant changes in the crystalline content and thermal properties. However, NMR data indicated that scCO2-treated PET has a slightly higher apparent number-average molecular weight (M n) relative to that of untreated PET. Overall, scCO2 pretreatment led to increased semicrystalline PET susceptibility to HiC enzyme action, resulting in increased TPA yields.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.3c08286</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3216-1533</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-05, Vol.12 (20), p.7713-7723
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_3c08286
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects carbon dioxide
crystal structure
cutinase
enzymatic hydrolysis
green chemistry
Humicola insolens
hydrophobicity
molecular weight
particle size
polyethylene terephthalates
surface area
title Probing Supercritical CO2 to Improve the Susceptibility of Semicrystalline Polyethylene Terephthalate to Enzymatic Hydrolysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Supercritical%20CO2%20to%20Improve%20the%20Susceptibility%20of%20Semicrystalline%20Polyethylene%20Terephthalate%20to%20Enzymatic%20Hydrolysis&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Gurrala,%20Lakshmiprasad&rft.date=2024-05-20&rft.volume=12&rft.issue=20&rft.spage=7713&rft.epage=7723&rft.pages=7713-7723&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.3c08286&rft_dat=%3Cproquest_acs_j%3E3153629087%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a230t-415c20fa735617f8568f011e69e3a5ac5b2120af25724a841f6f57e0a08f6a3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153629087&rft_id=info:pmid/&rfr_iscdi=true