Loading…
Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium-Ion Battery Anode Material
The monoclinic phase of Na4Ti5O12 (M-Na4Ti5O12) has been investigated as a potential sodium-ion battery anode material. In contrast to the previously investigated trigonal phase (T-Na4Ti5O12), M-Na4Ti5O12 has continuous two-dimensional (2D) channels with partially occupied Na sites, providing broade...
Saved in:
Published in: | Chemistry of materials 2014-12, Vol.26 (24), p.7067-7072 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The monoclinic phase of Na4Ti5O12 (M-Na4Ti5O12) has been investigated as a potential sodium-ion battery anode material. In contrast to the previously investigated trigonal phase (T-Na4Ti5O12), M-Na4Ti5O12 has continuous two-dimensional (2D) channels with partially occupied Na sites, providing broader pathways and more space for the intercalation of excess sodium. Electrochemical measurements show that it exhibits a comparable or higher reversible capacity than T-Na4Ti5O12. Neutron powder diffraction reveals the preferred sites and occupancies of the excess sodium. In situ synchrotron X-ray diffraction under electrochemical cycling shows that the crystal lattice undergoes strongly anisotropic volume changes during cycling. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm5035358 |