Loading…

A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions

Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are ch...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2010-06, Vol.49 (11), p.5101-5106
Main Authors: Moin, Syed Tarique, Hofer, Thomas S, Pribil, Andreas B, Randolf, Bernhard R, Rode, Bernd M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5106
container_issue 11
container_start_page 5101
container_title Inorganic chemistry
container_volume 49
creator Moin, Syed Tarique
Hofer, Thomas S
Pribil, Andreas B
Randolf, Bernhard R
Rode, Bernd M
description Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics.
doi_str_mv 10.1021/ic1002572
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_ic1002572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h45605725</sourcerecordid><originalsourceid>FETCH-LOGICAL-a115t-d4ced3a363d75653e911ce0526799fc375cc70bfd81fb5ee5aa67e81dbb1e5d03</originalsourceid><addsrcrecordid>eNo9kEFLw0AUhBdRsFYP_oN38VSi72W7m-ZYqtVCi4gK3sLL7otNSTfYZA_990YUTzN8DDMwSl0T3hKmdFc7QkxNlp6oEZkUE0P4capGA8SErM3P1UXX7RAx11M7UjKHl8ihj3vYiNtyqB03sNjy4VNgWUvjYdM24mLDB7g_Bt7XroPXPvojtBUsJZ0ABz8YPYFVGzqoA8y_orRxiLVN7OsBXqqziptOrv50rN6XD2-Lp2T9_LhazNcJE5k-8VMnXrO22mfGGi05kRM0qc3yvHI6M85lWFZ-RlVpRAyzzWRGvixJjEc9Vje_vey6YtfGQxjWCsLi55vi_xv9DV3KVeI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Moin, Syed Tarique ; Hofer, Thomas S ; Pribil, Andreas B ; Randolf, Bernhard R ; Rode, Bernd M</creator><creatorcontrib>Moin, Syed Tarique ; Hofer, Thomas S ; Pribil, Andreas B ; Randolf, Bernhard R ; Rode, Bernd M</creatorcontrib><description>Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic1002572</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2010-06, Vol.49 (11), p.5101-5106</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Moin, Syed Tarique</creatorcontrib><creatorcontrib>Hofer, Thomas S</creatorcontrib><creatorcontrib>Pribil, Andreas B</creatorcontrib><creatorcontrib>Randolf, Bernhard R</creatorcontrib><creatorcontrib>Rode, Bernd M</creatorcontrib><title>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFLw0AUhBdRsFYP_oN38VSi72W7m-ZYqtVCi4gK3sLL7otNSTfYZA_990YUTzN8DDMwSl0T3hKmdFc7QkxNlp6oEZkUE0P4capGA8SErM3P1UXX7RAx11M7UjKHl8ihj3vYiNtyqB03sNjy4VNgWUvjYdM24mLDB7g_Bt7XroPXPvojtBUsJZ0ABz8YPYFVGzqoA8y_orRxiLVN7OsBXqqziptOrv50rN6XD2-Lp2T9_LhazNcJE5k-8VMnXrO22mfGGi05kRM0qc3yvHI6M85lWFZ-RlVpRAyzzWRGvixJjEc9Vje_vey6YtfGQxjWCsLi55vi_xv9DV3KVeI</recordid><startdate>20100607</startdate><enddate>20100607</enddate><creator>Moin, Syed Tarique</creator><creator>Hofer, Thomas S</creator><creator>Pribil, Andreas B</creator><creator>Randolf, Bernhard R</creator><creator>Rode, Bernd M</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20100607</creationdate><title>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</title><author>Moin, Syed Tarique ; Hofer, Thomas S ; Pribil, Andreas B ; Randolf, Bernhard R ; Rode, Bernd M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a115t-d4ced3a363d75653e911ce0526799fc375cc70bfd81fb5ee5aa67e81dbb1e5d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moin, Syed Tarique</creatorcontrib><creatorcontrib>Hofer, Thomas S</creatorcontrib><creatorcontrib>Pribil, Andreas B</creatorcontrib><creatorcontrib>Randolf, Bernhard R</creatorcontrib><creatorcontrib>Rode, Bernd M</creatorcontrib><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moin, Syed Tarique</au><au>Hofer, Thomas S</au><au>Pribil, Andreas B</au><au>Randolf, Bernhard R</au><au>Rode, Bernd M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2010-06-07</date><risdate>2010</risdate><volume>49</volume><issue>11</issue><spage>5101</spage><epage>5106</epage><pages>5101-5106</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics.</abstract><pub>American Chemical Society</pub><doi>10.1021/ic1002572</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2010-06, Vol.49 (11), p.5101-5106
issn 0020-1669
1520-510X
language eng
recordid cdi_acs_journals_10_1021_ic1002572
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantum%20Mechanical%20Charge%20Field%20Molecular%20Dynamics%20Study%20of%20Fe2+%20and%20Fe3+%20Ions%20in%20Aqueous%20Solutions&rft.jtitle=Inorganic%20chemistry&rft.au=Moin,%20Syed%20Tarique&rft.date=2010-06-07&rft.volume=49&rft.issue=11&rft.spage=5101&rft.epage=5106&rft.pages=5101-5106&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic1002572&rft_dat=%3Cacs%3Eh45605725%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a115t-d4ced3a363d75653e911ce0526799fc375cc70bfd81fb5ee5aa67e81dbb1e5d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true