Loading…
A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions
Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are ch...
Saved in:
Published in: | Inorganic chemistry 2010-06, Vol.49 (11), p.5101-5106 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5106 |
container_issue | 11 |
container_start_page | 5101 |
container_title | Inorganic chemistry |
container_volume | 49 |
creator | Moin, Syed Tarique Hofer, Thomas S Pribil, Andreas B Randolf, Bernhard R Rode, Bernd M |
description | Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics. |
doi_str_mv | 10.1021/ic1002572 |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_ic1002572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h45605725</sourcerecordid><originalsourceid>FETCH-LOGICAL-a115t-d4ced3a363d75653e911ce0526799fc375cc70bfd81fb5ee5aa67e81dbb1e5d03</originalsourceid><addsrcrecordid>eNo9kEFLw0AUhBdRsFYP_oN38VSi72W7m-ZYqtVCi4gK3sLL7otNSTfYZA_990YUTzN8DDMwSl0T3hKmdFc7QkxNlp6oEZkUE0P4capGA8SErM3P1UXX7RAx11M7UjKHl8ihj3vYiNtyqB03sNjy4VNgWUvjYdM24mLDB7g_Bt7XroPXPvojtBUsJZ0ABz8YPYFVGzqoA8y_orRxiLVN7OsBXqqziptOrv50rN6XD2-Lp2T9_LhazNcJE5k-8VMnXrO22mfGGi05kRM0qc3yvHI6M85lWFZ-RlVpRAyzzWRGvixJjEc9Vje_vey6YtfGQxjWCsLi55vi_xv9DV3KVeI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Moin, Syed Tarique ; Hofer, Thomas S ; Pribil, Andreas B ; Randolf, Bernhard R ; Rode, Bernd M</creator><creatorcontrib>Moin, Syed Tarique ; Hofer, Thomas S ; Pribil, Andreas B ; Randolf, Bernhard R ; Rode, Bernd M</creatorcontrib><description>Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic1002572</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2010-06, Vol.49 (11), p.5101-5106</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Moin, Syed Tarique</creatorcontrib><creatorcontrib>Hofer, Thomas S</creatorcontrib><creatorcontrib>Pribil, Andreas B</creatorcontrib><creatorcontrib>Randolf, Bernhard R</creatorcontrib><creatorcontrib>Rode, Bernd M</creatorcontrib><title>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFLw0AUhBdRsFYP_oN38VSi72W7m-ZYqtVCi4gK3sLL7otNSTfYZA_990YUTzN8DDMwSl0T3hKmdFc7QkxNlp6oEZkUE0P4capGA8SErM3P1UXX7RAx11M7UjKHl8ihj3vYiNtyqB03sNjy4VNgWUvjYdM24mLDB7g_Bt7XroPXPvojtBUsJZ0ABz8YPYFVGzqoA8y_orRxiLVN7OsBXqqziptOrv50rN6XD2-Lp2T9_LhazNcJE5k-8VMnXrO22mfGGi05kRM0qc3yvHI6M85lWFZ-RlVpRAyzzWRGvixJjEc9Vje_vey6YtfGQxjWCsLi55vi_xv9DV3KVeI</recordid><startdate>20100607</startdate><enddate>20100607</enddate><creator>Moin, Syed Tarique</creator><creator>Hofer, Thomas S</creator><creator>Pribil, Andreas B</creator><creator>Randolf, Bernhard R</creator><creator>Rode, Bernd M</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20100607</creationdate><title>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</title><author>Moin, Syed Tarique ; Hofer, Thomas S ; Pribil, Andreas B ; Randolf, Bernhard R ; Rode, Bernd M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a115t-d4ced3a363d75653e911ce0526799fc375cc70bfd81fb5ee5aa67e81dbb1e5d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moin, Syed Tarique</creatorcontrib><creatorcontrib>Hofer, Thomas S</creatorcontrib><creatorcontrib>Pribil, Andreas B</creatorcontrib><creatorcontrib>Randolf, Bernhard R</creatorcontrib><creatorcontrib>Rode, Bernd M</creatorcontrib><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moin, Syed Tarique</au><au>Hofer, Thomas S</au><au>Pribil, Andreas B</au><au>Randolf, Bernhard R</au><au>Rode, Bernd M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2010-06-07</date><risdate>2010</risdate><volume>49</volume><issue>11</issue><spage>5101</spage><epage>5106</epage><pages>5101-5106</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations have been performed for aqueous solutions of Fe2+ and Fe3+ ions at the Hartree−Fock level of theory to describe and compare their structural and dynamical behavior. The structural features of both hydrated ions are characterized by radial distribution functions that give the maximum probability of the ion−O distance for Fe2+ and Fe3+ ions at 2.15 and 2.03 Å, respectively. The angular distribution functions of both ions prove the octahedral arrangement of six water ligands, whereas the second shells of these ions differ. Both ions show influence on the water molecules beyond the second shells. The structure-forming abilities of both ions are visible from the ligand mean residence times and ion−O stretching frequencies evaluated for both ions. The substantially improved data obtained from these QMCF-MD simulations show better correlation with available experimental results than the conventional quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) approaches with one hydration shell treated by quantum mechanics.</abstract><pub>American Chemical Society</pub><doi>10.1021/ic1002572</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2010-06, Vol.49 (11), p.5101-5106 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_acs_journals_10_1021_ic1002572 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | A Quantum Mechanical Charge Field Molecular Dynamics Study of Fe2+ and Fe3+ Ions in Aqueous Solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantum%20Mechanical%20Charge%20Field%20Molecular%20Dynamics%20Study%20of%20Fe2+%20and%20Fe3+%20Ions%20in%20Aqueous%20Solutions&rft.jtitle=Inorganic%20chemistry&rft.au=Moin,%20Syed%20Tarique&rft.date=2010-06-07&rft.volume=49&rft.issue=11&rft.spage=5101&rft.epage=5106&rft.pages=5101-5106&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic1002572&rft_dat=%3Cacs%3Eh45605725%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a115t-d4ced3a363d75653e911ce0526799fc375cc70bfd81fb5ee5aa67e81dbb1e5d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |