Loading…
Activation of High-T C Ferromagnetism in Mn2+-Doped ZnO using Amines
We report the discovery that high-T C ferromagnetism in manganese-doped ZnO (Mn2+:ZnO) can be activated by amine binding and calcination. The activation of ferromagnetism is attributed to the incorporation of uncompensated p-type dopants into the ZnO lattice upon amine calcination, a process that ha...
Saved in:
Published in: | Journal of the American Chemical Society 2005-04, Vol.127 (15), p.5292-5293 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the discovery that high-T C ferromagnetism in manganese-doped ZnO (Mn2+:ZnO) can be activated by amine binding and calcination. The activation of ferromagnetism is attributed to the incorporation of uncompensated p-type dopants into the ZnO lattice upon amine calcination, a process that has substantial precedence in the literature surrounding p-type ZnO. The experimental observations are consistent with a microscopic mechanism involving formation of bound magnetic polarons upon introduction of p-type dopants into Mn2+:ZnO. These results clearly demonstrate that Mn2+:ZnO ferromagnetism is critically sensitive to defects other than the magnetic dopants themselves, offering some insight into the diversity of experimental observations reported previously for this material. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja050723o |