Loading…
Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study
By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IR...
Saved in:
Published in: | Journal of physical chemistry. C 2010-10, Vol.114 (39), p.16855-16858 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 16858 |
container_issue | 39 |
container_start_page | 16855 |
container_title | Journal of physical chemistry. C |
container_volume | 114 |
creator | Stergiannakos, Taxiarchis Tylianakis, Emmanuel Klontzas, Emmanouel Froudakis, George E |
description | By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities. |
doi_str_mv | 10.1021/jp107323p |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp107323p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c663777142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a115t-f073105a52bbd4b3535372733fe42b96b917f992a903de1e9b968bd55e04423</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFYXvsHduJLo_GSM4y6U1goNXdR9uJNMamo6EzITpOIDuPYRfRJTKuUuzuHwcS_3EHLN6B2jnN1vWkYTwUV7QkZMCR4lsZSnRx8n5-TC-w2lUlAmRuRrat_QFmZrbABXwXxXdm5tLKSld10bamehtpCZgM3v98-yW6OtC5h1uDUfrnv3oHeQrfktzHpb7HFs6k_cmydIIeubUPsCGwMTt237gAcEVqEvd5fkrMLGm6t_HZPVbPo6mUeL5fPLJF1EyJgMUTV8xKhEybUuYy3kMAlPhKhMzLV60IollVIcFRWlYUYN2aMupTQ0jrkYk5vDVix8vnF9N9z3OaP5vrD8WJj4A4lSYAU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Stergiannakos, Taxiarchis ; Tylianakis, Emmanuel ; Klontzas, Emmanouel ; Froudakis, George E</creator><creatorcontrib>Stergiannakos, Taxiarchis ; Tylianakis, Emmanuel ; Klontzas, Emmanouel ; Froudakis, George E</creatorcontrib><description>By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp107323p</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2010-10, Vol.114 (39), p.16855-16858</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Klontzas, Emmanouel</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><title>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kM1Kw0AUhQdRsFYXvsHduJLo_GSM4y6U1goNXdR9uJNMamo6EzITpOIDuPYRfRJTKuUuzuHwcS_3EHLN6B2jnN1vWkYTwUV7QkZMCR4lsZSnRx8n5-TC-w2lUlAmRuRrat_QFmZrbABXwXxXdm5tLKSld10bamehtpCZgM3v98-yW6OtC5h1uDUfrnv3oHeQrfktzHpb7HFs6k_cmydIIeubUPsCGwMTt237gAcEVqEvd5fkrMLGm6t_HZPVbPo6mUeL5fPLJF1EyJgMUTV8xKhEybUuYy3kMAlPhKhMzLV60IollVIcFRWlYUYN2aMupTQ0jrkYk5vDVix8vnF9N9z3OaP5vrD8WJj4A4lSYAU</recordid><startdate>20101007</startdate><enddate>20101007</enddate><creator>Stergiannakos, Taxiarchis</creator><creator>Tylianakis, Emmanuel</creator><creator>Klontzas, Emmanouel</creator><creator>Froudakis, George E</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20101007</creationdate><title>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</title><author>Stergiannakos, Taxiarchis ; Tylianakis, Emmanuel ; Klontzas, Emmanouel ; Froudakis, George E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a115t-f073105a52bbd4b3535372733fe42b96b917f992a903de1e9b968bd55e04423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Klontzas, Emmanouel</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stergiannakos, Taxiarchis</au><au>Tylianakis, Emmanuel</au><au>Klontzas, Emmanouel</au><au>Froudakis, George E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-10-07</date><risdate>2010</risdate><volume>114</volume><issue>39</issue><spage>16855</spage><epage>16858</epage><pages>16855-16858</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp107323p</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2010-10, Vol.114 (39), p.16855-16858 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_jp107323p |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | C: Energy Conversion and Storage |
title | Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Hydrogen%20Adsorption%20in%20Metal%E2%88%92Organic%20Frameworks%20by%20Mg2+%20Functionalization:%20A%20Multiscale%20Computational%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Stergiannakos,%20Taxiarchis&rft.date=2010-10-07&rft.volume=114&rft.issue=39&rft.spage=16855&rft.epage=16858&rft.pages=16855-16858&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp107323p&rft_dat=%3Cacs%3Ec663777142%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a115t-f073105a52bbd4b3535372733fe42b96b917f992a903de1e9b968bd55e04423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |