Loading…

Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study

By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IR...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2010-10, Vol.114 (39), p.16855-16858
Main Authors: Stergiannakos, Taxiarchis, Tylianakis, Emmanuel, Klontzas, Emmanouel, Froudakis, George E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 16858
container_issue 39
container_start_page 16855
container_title Journal of physical chemistry. C
container_volume 114
creator Stergiannakos, Taxiarchis
Tylianakis, Emmanuel
Klontzas, Emmanouel
Froudakis, George E
description By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities.
doi_str_mv 10.1021/jp107323p
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp107323p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c663777142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a115t-f073105a52bbd4b3535372733fe42b96b917f992a903de1e9b968bd55e04423</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFYXvsHduJLo_GSM4y6U1goNXdR9uJNMamo6EzITpOIDuPYRfRJTKuUuzuHwcS_3EHLN6B2jnN1vWkYTwUV7QkZMCR4lsZSnRx8n5-TC-w2lUlAmRuRrat_QFmZrbABXwXxXdm5tLKSld10bamehtpCZgM3v98-yW6OtC5h1uDUfrnv3oHeQrfktzHpb7HFs6k_cmydIIeubUPsCGwMTt237gAcEVqEvd5fkrMLGm6t_HZPVbPo6mUeL5fPLJF1EyJgMUTV8xKhEybUuYy3kMAlPhKhMzLV60IollVIcFRWlYUYN2aMupTQ0jrkYk5vDVix8vnF9N9z3OaP5vrD8WJj4A4lSYAU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Stergiannakos, Taxiarchis ; Tylianakis, Emmanuel ; Klontzas, Emmanouel ; Froudakis, George E</creator><creatorcontrib>Stergiannakos, Taxiarchis ; Tylianakis, Emmanuel ; Klontzas, Emmanouel ; Froudakis, George E</creatorcontrib><description>By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp107323p</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2010-10, Vol.114 (39), p.16855-16858</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Klontzas, Emmanouel</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><title>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kM1Kw0AUhQdRsFYXvsHduJLo_GSM4y6U1goNXdR9uJNMamo6EzITpOIDuPYRfRJTKuUuzuHwcS_3EHLN6B2jnN1vWkYTwUV7QkZMCR4lsZSnRx8n5-TC-w2lUlAmRuRrat_QFmZrbABXwXxXdm5tLKSld10bamehtpCZgM3v98-yW6OtC5h1uDUfrnv3oHeQrfktzHpb7HFs6k_cmydIIeubUPsCGwMTt237gAcEVqEvd5fkrMLGm6t_HZPVbPo6mUeL5fPLJF1EyJgMUTV8xKhEybUuYy3kMAlPhKhMzLV60IollVIcFRWlYUYN2aMupTQ0jrkYk5vDVix8vnF9N9z3OaP5vrD8WJj4A4lSYAU</recordid><startdate>20101007</startdate><enddate>20101007</enddate><creator>Stergiannakos, Taxiarchis</creator><creator>Tylianakis, Emmanuel</creator><creator>Klontzas, Emmanouel</creator><creator>Froudakis, George E</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20101007</creationdate><title>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</title><author>Stergiannakos, Taxiarchis ; Tylianakis, Emmanuel ; Klontzas, Emmanouel ; Froudakis, George E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a115t-f073105a52bbd4b3535372733fe42b96b917f992a903de1e9b968bd55e04423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Klontzas, Emmanouel</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stergiannakos, Taxiarchis</au><au>Tylianakis, Emmanuel</au><au>Klontzas, Emmanouel</au><au>Froudakis, George E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-10-07</date><risdate>2010</risdate><volume>114</volume><issue>39</issue><spage>16855</spage><epage>16858</epage><pages>16855-16858</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>By means of multiscale theoretical techniques, we examined the ability of Mg2+ to enhance H2 storage in metal−organic frameworks. Ab initio calculations showed that Mg2+ increases more than five times the interaction energy between the hydrogen molecules and the new proposed organic linker of the IRMOF-10, reaching the value of 4.73 kcal/mol. The substituted group of the linker may host up to five hydrogen molecules with an average interaction energy of 3.1 kcal/mol per H2 molecule. GCMC atomistic simulations verified that the proposed material can be qualified among the highest adsorbing materials for volumetric storage of H2, especially under ambient conditions. This functionalization strategy can be applied in many different framework structures to enhance their gas storage abilities.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp107323p</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-10, Vol.114 (39), p.16855-16858
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_jp107323p
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Energy Conversion and Storage
title Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg2+ Functionalization: A Multiscale Computational Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Hydrogen%20Adsorption%20in%20Metal%E2%88%92Organic%20Frameworks%20by%20Mg2+%20Functionalization:%20A%20Multiscale%20Computational%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Stergiannakos,%20Taxiarchis&rft.date=2010-10-07&rft.volume=114&rft.issue=39&rft.spage=16855&rft.epage=16858&rft.pages=16855-16858&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp107323p&rft_dat=%3Cacs%3Ec663777142%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a115t-f073105a52bbd4b3535372733fe42b96b917f992a903de1e9b968bd55e04423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true