Loading…
Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach
TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjectiv...
Saved in:
Published in: | Journal of physical chemistry. C 2014-02, Vol.118 (5), p.2333-2337 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2337 |
container_issue | 5 |
container_start_page | 2333 |
container_title | Journal of physical chemistry. C |
container_volume | 118 |
creator | Chen, Hou-Zun Zhang, Yue-Yu Gong, Xingao Xiang, Hongjun |
description | TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion. |
doi_str_mv | 10.1021/jp411437f |
format | article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp411437f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b417579694</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-bac283cbd1a43d64f5fbed73e0fa75be6f1275c45802f04edb4091c5b61279413</originalsourceid><addsrcrecordid>eNo9UMFOwzAUixBIjMGBP3gXjoW8Jlm345igIA26w7hSvaQJS1XaqumoxtdTBNrJli3bkhm7Rn6LPMa7spWIUiTuhE1wIeIokUqdHrlMztlFCCXnSnAUE_a-6WzhTe_rD3i1A2x9FsNmR8EGGHy_g3UzwD3VBaTUBtAHIHjZV71vdGnH2JeFtGo0VZC1vf_03zRaNSzbtmvI7C7ZmaMq2Kt_nLK3x4ft6ilaZ-nzarmOCOeqjzSZeC6MLpCkKGbSKadtkQjLHSVK25nDOFFGqjmPHZe20JIv0Cg9G_WFRDFlN3-9ZEJeNvuuHtdy5PnvKfnxFPEDsIhUhg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Hou-Zun ; Zhang, Yue-Yu ; Gong, Xingao ; Xiang, Hongjun</creator><creatorcontrib>Chen, Hou-Zun ; Zhang, Yue-Yu ; Gong, Xingao ; Xiang, Hongjun</creatorcontrib><description>TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp411437f</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-02, Vol.118 (5), p.2333-2337</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Hou-Zun</creatorcontrib><creatorcontrib>Zhang, Yue-Yu</creatorcontrib><creatorcontrib>Gong, Xingao</creatorcontrib><creatorcontrib>Xiang, Hongjun</creatorcontrib><title>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9UMFOwzAUixBIjMGBP3gXjoW8Jlm345igIA26w7hSvaQJS1XaqumoxtdTBNrJli3bkhm7Rn6LPMa7spWIUiTuhE1wIeIokUqdHrlMztlFCCXnSnAUE_a-6WzhTe_rD3i1A2x9FsNmR8EGGHy_g3UzwD3VBaTUBtAHIHjZV71vdGnH2JeFtGo0VZC1vf_03zRaNSzbtmvI7C7ZmaMq2Kt_nLK3x4ft6ilaZ-nzarmOCOeqjzSZeC6MLpCkKGbSKadtkQjLHSVK25nDOFFGqjmPHZe20JIv0Cg9G_WFRDFlN3-9ZEJeNvuuHtdy5PnvKfnxFPEDsIhUhg</recordid><startdate>20140206</startdate><enddate>20140206</enddate><creator>Chen, Hou-Zun</creator><creator>Zhang, Yue-Yu</creator><creator>Gong, Xingao</creator><creator>Xiang, Hongjun</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20140206</creationdate><title>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</title><author>Chen, Hou-Zun ; Zhang, Yue-Yu ; Gong, Xingao ; Xiang, Hongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-bac283cbd1a43d64f5fbed73e0fa75be6f1275c45802f04edb4091c5b61279413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hou-Zun</creatorcontrib><creatorcontrib>Zhang, Yue-Yu</creatorcontrib><creatorcontrib>Gong, Xingao</creatorcontrib><creatorcontrib>Xiang, Hongjun</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hou-Zun</au><au>Zhang, Yue-Yu</au><au>Gong, Xingao</au><au>Xiang, Hongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-02-06</date><risdate>2014</risdate><volume>118</volume><issue>5</issue><spage>2333</spage><epage>2337</epage><pages>2333-2337</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp411437f</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2014-02, Vol.118 (5), p.2333-2337 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_jp411437f |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20New%20TiO2%20Phases%20with%20Low%20Band%20Gaps%20by%20a%20Multiobjective%20Global%20Optimization%20Approach&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Chen,%20Hou-Zun&rft.date=2014-02-06&rft.volume=118&rft.issue=5&rft.spage=2333&rft.epage=2337&rft.pages=2333-2337&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp411437f&rft_dat=%3Cacs%3Eb417579694%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a185t-bac283cbd1a43d64f5fbed73e0fa75be6f1275c45802f04edb4091c5b61279413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |