Loading…

Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach

TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjectiv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-02, Vol.118 (5), p.2333-2337
Main Authors: Chen, Hou-Zun, Zhang, Yue-Yu, Gong, Xingao, Xiang, Hongjun
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2337
container_issue 5
container_start_page 2333
container_title Journal of physical chemistry. C
container_volume 118
creator Chen, Hou-Zun
Zhang, Yue-Yu
Gong, Xingao
Xiang, Hongjun
description TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.
doi_str_mv 10.1021/jp411437f
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp411437f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b417579694</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-bac283cbd1a43d64f5fbed73e0fa75be6f1275c45802f04edb4091c5b61279413</originalsourceid><addsrcrecordid>eNo9UMFOwzAUixBIjMGBP3gXjoW8Jlm345igIA26w7hSvaQJS1XaqumoxtdTBNrJli3bkhm7Rn6LPMa7spWIUiTuhE1wIeIokUqdHrlMztlFCCXnSnAUE_a-6WzhTe_rD3i1A2x9FsNmR8EGGHy_g3UzwD3VBaTUBtAHIHjZV71vdGnH2JeFtGo0VZC1vf_03zRaNSzbtmvI7C7ZmaMq2Kt_nLK3x4ft6ilaZ-nzarmOCOeqjzSZeC6MLpCkKGbSKadtkQjLHSVK25nDOFFGqjmPHZe20JIv0Cg9G_WFRDFlN3-9ZEJeNvuuHtdy5PnvKfnxFPEDsIhUhg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Hou-Zun ; Zhang, Yue-Yu ; Gong, Xingao ; Xiang, Hongjun</creator><creatorcontrib>Chen, Hou-Zun ; Zhang, Yue-Yu ; Gong, Xingao ; Xiang, Hongjun</creatorcontrib><description>TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp411437f</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-02, Vol.118 (5), p.2333-2337</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Hou-Zun</creatorcontrib><creatorcontrib>Zhang, Yue-Yu</creatorcontrib><creatorcontrib>Gong, Xingao</creatorcontrib><creatorcontrib>Xiang, Hongjun</creatorcontrib><title>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9UMFOwzAUixBIjMGBP3gXjoW8Jlm345igIA26w7hSvaQJS1XaqumoxtdTBNrJli3bkhm7Rn6LPMa7spWIUiTuhE1wIeIokUqdHrlMztlFCCXnSnAUE_a-6WzhTe_rD3i1A2x9FsNmR8EGGHy_g3UzwD3VBaTUBtAHIHjZV71vdGnH2JeFtGo0VZC1vf_03zRaNSzbtmvI7C7ZmaMq2Kt_nLK3x4ft6ilaZ-nzarmOCOeqjzSZeC6MLpCkKGbSKadtkQjLHSVK25nDOFFGqjmPHZe20JIv0Cg9G_WFRDFlN3-9ZEJeNvuuHtdy5PnvKfnxFPEDsIhUhg</recordid><startdate>20140206</startdate><enddate>20140206</enddate><creator>Chen, Hou-Zun</creator><creator>Zhang, Yue-Yu</creator><creator>Gong, Xingao</creator><creator>Xiang, Hongjun</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20140206</creationdate><title>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</title><author>Chen, Hou-Zun ; Zhang, Yue-Yu ; Gong, Xingao ; Xiang, Hongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-bac283cbd1a43d64f5fbed73e0fa75be6f1275c45802f04edb4091c5b61279413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hou-Zun</creatorcontrib><creatorcontrib>Zhang, Yue-Yu</creatorcontrib><creatorcontrib>Gong, Xingao</creatorcontrib><creatorcontrib>Xiang, Hongjun</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hou-Zun</au><au>Zhang, Yue-Yu</au><au>Gong, Xingao</au><au>Xiang, Hongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-02-06</date><risdate>2014</risdate><volume>118</volume><issue>5</issue><spage>2333</spage><epage>2337</epage><pages>2333-2337</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp411437f</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-02, Vol.118 (5), p.2333-2337
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_jp411437f
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20New%20TiO2%20Phases%20with%20Low%20Band%20Gaps%20by%20a%20Multiobjective%20Global%20Optimization%20Approach&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Chen,%20Hou-Zun&rft.date=2014-02-06&rft.volume=118&rft.issue=5&rft.spage=2333&rft.epage=2337&rft.pages=2333-2337&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp411437f&rft_dat=%3Cacs%3Eb417579694%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a185t-bac283cbd1a43d64f5fbed73e0fa75be6f1275c45802f04edb4091c5b61279413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true