Loading…

Direct Visualization of Water-Induced Relocation of Au Atoms from Oxygen Vacancies on a TiO2(110) Surface

Variable-temperature scanning tunneling microscopy (STM) is used to show that Au1 + deposited onto a TiO2(110)-(1 × 1) surface under soft-landing conditions at 600 K results in a surface decorated with isolated gold atoms bound to oxygen vacancies. This result is in sharp contrast to the large, sint...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2010-03, Vol.114 (9), p.3987-3990
Main Authors: Tong, Xiao, Benz, Lauren, Chrétien, Steeve, Metiu, Horia, Bowers, Michael T, Buratto, Steven K
Format: Article
Language:eng ; jpn
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3990
container_issue 9
container_start_page 3987
container_title Journal of physical chemistry. C
container_volume 114
creator Tong, Xiao
Benz, Lauren
Chrétien, Steeve
Metiu, Horia
Bowers, Michael T
Buratto, Steven K
description Variable-temperature scanning tunneling microscopy (STM) is used to show that Au1 + deposited onto a TiO2(110)-(1 × 1) surface under soft-landing conditions at 600 K results in a surface decorated with isolated gold atoms bound to oxygen vacancies. This result is in sharp contrast to the large, sintered islands which form from Au1 + deposited onto a hydroxylated TiO2(110)-(1 × 1) surface under soft-landing conditions at 300 K. The position of the isolated Au atoms prepared by deposition at 600 K changes from directly above the bridging oxygen rows to directly above 5c-Ti atoms when the substrate is allowed to cool from 600 to 300 K. The binding site of the Au atoms returns to directly over the bridging oxygen rows when the temperature is returned to 600 K, indicating that this process is reversible. We attribute the change in binding site to a competition between the Au atom and an adsorbed water molecule for an oxygen vacancy on the reduced TiO2 surface. Using density functional theory (DFT), we show that dissociative adsorption of water occurs at an oxygen vacancy occupied by an Au atom, displaces the Au atom, and forms a stable OH−Au−TiO 2 complex on the surface.
doi_str_mv 10.1021/jp9098705
format article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp9098705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h06082305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a181t-7a6285625bce5589ed1a5df46ce0faa853c22c22501c02da797e2bd18f8c0ba43</originalsourceid><addsrcrecordid>eNo9UMFKxDAUDKLgunrwD3IR9FB9L23a9FjWVRcWCrqux_KaJpLSbaVpQf16K0phYAZmmIFh7BLhFkHgXf2RQqoSkEdsgWkogiSS8njWUXLKzryvAWQIGC6Yu3e90QPfOz9S475pcF3LO8vfaDB9sGmrUZuKP5um07OXjTwbuoPntu8OPP_8ejct35OmVjvj-RQivnO5uEaEG_4y9pa0OWcnlhpvLv55yV4f1rvVU7DNHzerbBsQKhyChGKhZCxkqY2UKjUVkqxsFGsDlkjJUAsxQQJqEBUlaWJEWaGySkNJUbhkV3-9pH1Rd2PfTmsFQvH7TzH_E_4AR7hXLA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Visualization of Water-Induced Relocation of Au Atoms from Oxygen Vacancies on a TiO2(110) Surface</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tong, Xiao ; Benz, Lauren ; Chrétien, Steeve ; Metiu, Horia ; Bowers, Michael T ; Buratto, Steven K</creator><creatorcontrib>Tong, Xiao ; Benz, Lauren ; Chrétien, Steeve ; Metiu, Horia ; Bowers, Michael T ; Buratto, Steven K</creatorcontrib><description>Variable-temperature scanning tunneling microscopy (STM) is used to show that Au1 + deposited onto a TiO2(110)-(1 × 1) surface under soft-landing conditions at 600 K results in a surface decorated with isolated gold atoms bound to oxygen vacancies. This result is in sharp contrast to the large, sintered islands which form from Au1 + deposited onto a hydroxylated TiO2(110)-(1 × 1) surface under soft-landing conditions at 300 K. The position of the isolated Au atoms prepared by deposition at 600 K changes from directly above the bridging oxygen rows to directly above 5c-Ti atoms when the substrate is allowed to cool from 600 to 300 K. The binding site of the Au atoms returns to directly over the bridging oxygen rows when the temperature is returned to 600 K, indicating that this process is reversible. We attribute the change in binding site to a competition between the Au atom and an adsorbed water molecule for an oxygen vacancy on the reduced TiO2 surface. Using density functional theory (DFT), we show that dissociative adsorption of water occurs at an oxygen vacancy occupied by an Au atom, displaces the Au atom, and forms a stable OH−Au−TiO 2 complex on the surface.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp9098705</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis</subject><ispartof>Journal of physical chemistry. C, 2010-03, Vol.114 (9), p.3987-3990</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Benz, Lauren</creatorcontrib><creatorcontrib>Chrétien, Steeve</creatorcontrib><creatorcontrib>Metiu, Horia</creatorcontrib><creatorcontrib>Bowers, Michael T</creatorcontrib><creatorcontrib>Buratto, Steven K</creatorcontrib><title>Direct Visualization of Water-Induced Relocation of Au Atoms from Oxygen Vacancies on a TiO2(110) Surface</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Variable-temperature scanning tunneling microscopy (STM) is used to show that Au1 + deposited onto a TiO2(110)-(1 × 1) surface under soft-landing conditions at 600 K results in a surface decorated with isolated gold atoms bound to oxygen vacancies. This result is in sharp contrast to the large, sintered islands which form from Au1 + deposited onto a hydroxylated TiO2(110)-(1 × 1) surface under soft-landing conditions at 300 K. The position of the isolated Au atoms prepared by deposition at 600 K changes from directly above the bridging oxygen rows to directly above 5c-Ti atoms when the substrate is allowed to cool from 600 to 300 K. The binding site of the Au atoms returns to directly over the bridging oxygen rows when the temperature is returned to 600 K, indicating that this process is reversible. We attribute the change in binding site to a competition between the Au atom and an adsorbed water molecule for an oxygen vacancy on the reduced TiO2 surface. Using density functional theory (DFT), we show that dissociative adsorption of water occurs at an oxygen vacancy occupied by an Au atom, displaces the Au atom, and forms a stable OH−Au−TiO 2 complex on the surface.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9UMFKxDAUDKLgunrwD3IR9FB9L23a9FjWVRcWCrqux_KaJpLSbaVpQf16K0phYAZmmIFh7BLhFkHgXf2RQqoSkEdsgWkogiSS8njWUXLKzryvAWQIGC6Yu3e90QPfOz9S475pcF3LO8vfaDB9sGmrUZuKP5um07OXjTwbuoPntu8OPP_8ejct35OmVjvj-RQivnO5uEaEG_4y9pa0OWcnlhpvLv55yV4f1rvVU7DNHzerbBsQKhyChGKhZCxkqY2UKjUVkqxsFGsDlkjJUAsxQQJqEBUlaWJEWaGySkNJUbhkV3-9pH1Rd2PfTmsFQvH7TzH_E_4AR7hXLA</recordid><startdate>20100311</startdate><enddate>20100311</enddate><creator>Tong, Xiao</creator><creator>Benz, Lauren</creator><creator>Chrétien, Steeve</creator><creator>Metiu, Horia</creator><creator>Bowers, Michael T</creator><creator>Buratto, Steven K</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20100311</creationdate><title>Direct Visualization of Water-Induced Relocation of Au Atoms from Oxygen Vacancies on a TiO2(110) Surface</title><author>Tong, Xiao ; Benz, Lauren ; Chrétien, Steeve ; Metiu, Horia ; Bowers, Michael T ; Buratto, Steven K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a181t-7a6285625bce5589ed1a5df46ce0faa853c22c22501c02da797e2bd18f8c0ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2010</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Benz, Lauren</creatorcontrib><creatorcontrib>Chrétien, Steeve</creatorcontrib><creatorcontrib>Metiu, Horia</creatorcontrib><creatorcontrib>Bowers, Michael T</creatorcontrib><creatorcontrib>Buratto, Steven K</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Xiao</au><au>Benz, Lauren</au><au>Chrétien, Steeve</au><au>Metiu, Horia</au><au>Bowers, Michael T</au><au>Buratto, Steven K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Visualization of Water-Induced Relocation of Au Atoms from Oxygen Vacancies on a TiO2(110) Surface</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-03-11</date><risdate>2010</risdate><volume>114</volume><issue>9</issue><spage>3987</spage><epage>3990</epage><pages>3987-3990</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Variable-temperature scanning tunneling microscopy (STM) is used to show that Au1 + deposited onto a TiO2(110)-(1 × 1) surface under soft-landing conditions at 600 K results in a surface decorated with isolated gold atoms bound to oxygen vacancies. This result is in sharp contrast to the large, sintered islands which form from Au1 + deposited onto a hydroxylated TiO2(110)-(1 × 1) surface under soft-landing conditions at 300 K. The position of the isolated Au atoms prepared by deposition at 600 K changes from directly above the bridging oxygen rows to directly above 5c-Ti atoms when the substrate is allowed to cool from 600 to 300 K. The binding site of the Au atoms returns to directly over the bridging oxygen rows when the temperature is returned to 600 K, indicating that this process is reversible. We attribute the change in binding site to a competition between the Au atom and an adsorbed water molecule for an oxygen vacancy on the reduced TiO2 surface. Using density functional theory (DFT), we show that dissociative adsorption of water occurs at an oxygen vacancy occupied by an Au atom, displaces the Au atom, and forms a stable OH−Au−TiO 2 complex on the surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp9098705</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-03, Vol.114 (9), p.3987-3990
issn 1932-7447
1932-7455
language eng ; jpn
recordid cdi_acs_journals_10_1021_jp9098705
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects C: Surfaces, Interfaces, Catalysis
title Direct Visualization of Water-Induced Relocation of Au Atoms from Oxygen Vacancies on a TiO2(110) Surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Visualization%20of%20Water-Induced%20Relocation%20of%20Au%20Atoms%20from%20Oxygen%20Vacancies%20on%20a%20TiO2(110)%20Surface&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Tong,%20Xiao&rft.date=2010-03-11&rft.volume=114&rft.issue=9&rft.spage=3987&rft.epage=3990&rft.pages=3987-3990&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp9098705&rft_dat=%3Cacs%3Eh06082305%3C/acs%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a181t-7a6285625bce5589ed1a5df46ce0faa853c22c22501c02da797e2bd18f8c0ba43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true