Loading…

Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study

An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2013-02, Vol.51 (2), p.386-396
Main Authors: Solomon, John T, Foster, Chase, Alvi, Farrukh S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93
cites cdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93
container_end_page 396
container_issue 2
container_start_page 386
container_title AIAA journal
container_volume 51
creator Solomon, John T
Foster, Chase
Alvi, Farrukh S
description An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.
doi_str_mv 10.2514/1.J051806
format article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J051806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323250954</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</originalsourceid><addsrcrecordid>eNplkFlLxDAUhYMoOC4P_oOAKApWc7O0qW_juDOiuIBv5ZqmTnSm1aRFxl9vZAYRfToJ9zsnuYeQDWD7XIE8gP1LpkCzdIH0QAmRCK0eF0mPMQYJSMWXyUoIL_HGMw098npsg3uuKdYlHYzQo2mtd5_YuqamTUXP3fMoOYrTD1e2oz16a0NTY20sPalH31rSm24colw545to77BtfDikfXoT4ya29c7Qu7Yrp2tkqcLIrs91lTycntwPzpPh9dnFoD9MUELWJqkUqgRjZAq20lKrzFipc6WtBmNFPJWM8aenqkLBU6iU4XmWoY0elBxzsUp2ZrlvvnnvbGiLiQvGjsdY26YLBQguuGK5khHd_IO-NJ2v4-8K4JrHwnLgkdqdUXHDELytijfvJuinBbDiu_YCinntkd2aJ2IwOK58LMmFHwPPQLIsVZHbnnHoEH-9-i_wC8e2jFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282145912</pqid></control><display><type>article</type><title>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</title><source>Alma/SFX Local Collection</source><creator>Solomon, John T ; Foster, Chase ; Alvi, Farrukh S</creator><creatorcontrib>Solomon, John T ; Foster, Chase ; Alvi, Farrukh S</creatorcontrib><description>An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J051806</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Actuators ; Aerodynamics ; Aerospace engineering ; Bandwidths ; Boundary layer ; Design engineering ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Flow control ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Microactuators ; Microjets ; Motors ; Nozzle geometry ; Physics ; Unsteady</subject><ispartof>AIAA journal, 2013-02, Vol.51 (2), p.386-396</ispartof><rights>Copyright © 2012 by F. S. Alvi, Florida Center for Advanced Aero- Propulsion. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</citedby><cites>FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27140765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Solomon, John T</creatorcontrib><creatorcontrib>Foster, Chase</creatorcontrib><creatorcontrib>Alvi, Farrukh S</creatorcontrib><title>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</title><title>AIAA journal</title><description>An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.</description><subject>Active control</subject><subject>Actuators</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Bandwidths</subject><subject>Boundary layer</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Microactuators</subject><subject>Microjets</subject><subject>Motors</subject><subject>Nozzle geometry</subject><subject>Physics</subject><subject>Unsteady</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNplkFlLxDAUhYMoOC4P_oOAKApWc7O0qW_juDOiuIBv5ZqmTnSm1aRFxl9vZAYRfToJ9zsnuYeQDWD7XIE8gP1LpkCzdIH0QAmRCK0eF0mPMQYJSMWXyUoIL_HGMw098npsg3uuKdYlHYzQo2mtd5_YuqamTUXP3fMoOYrTD1e2oz16a0NTY20sPalH31rSm24colw545to77BtfDikfXoT4ya29c7Qu7Yrp2tkqcLIrs91lTycntwPzpPh9dnFoD9MUELWJqkUqgRjZAq20lKrzFipc6WtBmNFPJWM8aenqkLBU6iU4XmWoY0elBxzsUp2ZrlvvnnvbGiLiQvGjsdY26YLBQguuGK5khHd_IO-NJ2v4-8K4JrHwnLgkdqdUXHDELytijfvJuinBbDiu_YCinntkd2aJ2IwOK58LMmFHwPPQLIsVZHbnnHoEH-9-i_wC8e2jFs</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Solomon, John T</creator><creator>Foster, Chase</creator><creator>Alvi, Farrukh S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</title><author>Solomon, John T ; Foster, Chase ; Alvi, Farrukh S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Bandwidths</topic><topic>Boundary layer</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Microactuators</topic><topic>Microjets</topic><topic>Motors</topic><topic>Nozzle geometry</topic><topic>Physics</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solomon, John T</creatorcontrib><creatorcontrib>Foster, Chase</creatorcontrib><creatorcontrib>Alvi, Farrukh S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solomon, John T</au><au>Foster, Chase</au><au>Alvi, Farrukh S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</atitle><jtitle>AIAA journal</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>51</volume><issue>2</issue><spage>386</spage><epage>396</epage><pages>386-396</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J051806</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2013-02, Vol.51 (2), p.386-396
issn 0001-1452
1533-385X
language eng
recordid cdi_aiaa_journals_10_2514_1_J051806
source Alma/SFX Local Collection
subjects Active control
Actuators
Aerodynamics
Aerospace engineering
Bandwidths
Boundary layer
Design engineering
Dynamical systems
Dynamics
Exact sciences and technology
Flow control
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Microactuators
Microjets
Motors
Nozzle geometry
Physics
Unsteady
title Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Characterization%20of%20High-Bandwidth,%20Resonance%20Enhanced%20Pulsed%20Microactuators:%20A%20Parametric%20Study&rft.jtitle=AIAA%20journal&rft.au=Solomon,%20John%20T&rft.date=2013-02-01&rft.volume=51&rft.issue=2&rft.spage=386&rft.epage=396&rft.pages=386-396&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J051806&rft_dat=%3Cproquest_aiaa_%3E1323250954%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1282145912&rft_id=info:pmid/&rfr_iscdi=true