Loading…
Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study
An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise...
Saved in:
Published in: | AIAA journal 2013-02, Vol.51 (2), p.386-396 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93 |
---|---|
cites | cdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93 |
container_end_page | 396 |
container_issue | 2 |
container_start_page | 386 |
container_title | AIAA journal |
container_volume | 51 |
creator | Solomon, John T Foster, Chase Alvi, Farrukh S |
description | An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications. |
doi_str_mv | 10.2514/1.J051806 |
format | article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J051806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323250954</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</originalsourceid><addsrcrecordid>eNplkFlLxDAUhYMoOC4P_oOAKApWc7O0qW_juDOiuIBv5ZqmTnSm1aRFxl9vZAYRfToJ9zsnuYeQDWD7XIE8gP1LpkCzdIH0QAmRCK0eF0mPMQYJSMWXyUoIL_HGMw098npsg3uuKdYlHYzQo2mtd5_YuqamTUXP3fMoOYrTD1e2oz16a0NTY20sPalH31rSm24colw545to77BtfDikfXoT4ya29c7Qu7Yrp2tkqcLIrs91lTycntwPzpPh9dnFoD9MUELWJqkUqgRjZAq20lKrzFipc6WtBmNFPJWM8aenqkLBU6iU4XmWoY0elBxzsUp2ZrlvvnnvbGiLiQvGjsdY26YLBQguuGK5khHd_IO-NJ2v4-8K4JrHwnLgkdqdUXHDELytijfvJuinBbDiu_YCinntkd2aJ2IwOK58LMmFHwPPQLIsVZHbnnHoEH-9-i_wC8e2jFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282145912</pqid></control><display><type>article</type><title>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</title><source>Alma/SFX Local Collection</source><creator>Solomon, John T ; Foster, Chase ; Alvi, Farrukh S</creator><creatorcontrib>Solomon, John T ; Foster, Chase ; Alvi, Farrukh S</creatorcontrib><description>An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J051806</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Actuators ; Aerodynamics ; Aerospace engineering ; Bandwidths ; Boundary layer ; Design engineering ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Flow control ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Microactuators ; Microjets ; Motors ; Nozzle geometry ; Physics ; Unsteady</subject><ispartof>AIAA journal, 2013-02, Vol.51 (2), p.386-396</ispartof><rights>Copyright © 2012 by F. S. Alvi, Florida Center for Advanced Aero- Propulsion. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</citedby><cites>FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27140765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Solomon, John T</creatorcontrib><creatorcontrib>Foster, Chase</creatorcontrib><creatorcontrib>Alvi, Farrukh S</creatorcontrib><title>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</title><title>AIAA journal</title><description>An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.</description><subject>Active control</subject><subject>Actuators</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Bandwidths</subject><subject>Boundary layer</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Microactuators</subject><subject>Microjets</subject><subject>Motors</subject><subject>Nozzle geometry</subject><subject>Physics</subject><subject>Unsteady</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNplkFlLxDAUhYMoOC4P_oOAKApWc7O0qW_juDOiuIBv5ZqmTnSm1aRFxl9vZAYRfToJ9zsnuYeQDWD7XIE8gP1LpkCzdIH0QAmRCK0eF0mPMQYJSMWXyUoIL_HGMw098npsg3uuKdYlHYzQo2mtd5_YuqamTUXP3fMoOYrTD1e2oz16a0NTY20sPalH31rSm24colw545to77BtfDikfXoT4ya29c7Qu7Yrp2tkqcLIrs91lTycntwPzpPh9dnFoD9MUELWJqkUqgRjZAq20lKrzFipc6WtBmNFPJWM8aenqkLBU6iU4XmWoY0elBxzsUp2ZrlvvnnvbGiLiQvGjsdY26YLBQguuGK5khHd_IO-NJ2v4-8K4JrHwnLgkdqdUXHDELytijfvJuinBbDiu_YCinntkd2aJ2IwOK58LMmFHwPPQLIsVZHbnnHoEH-9-i_wC8e2jFs</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Solomon, John T</creator><creator>Foster, Chase</creator><creator>Alvi, Farrukh S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</title><author>Solomon, John T ; Foster, Chase ; Alvi, Farrukh S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Bandwidths</topic><topic>Boundary layer</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Microactuators</topic><topic>Microjets</topic><topic>Motors</topic><topic>Nozzle geometry</topic><topic>Physics</topic><topic>Unsteady</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solomon, John T</creatorcontrib><creatorcontrib>Foster, Chase</creatorcontrib><creatorcontrib>Alvi, Farrukh S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solomon, John T</au><au>Foster, Chase</au><au>Alvi, Farrukh S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study</atitle><jtitle>AIAA journal</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>51</volume><issue>2</issue><spage>386</spage><epage>396</epage><pages>386-396</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1–60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J051806</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2013-02, Vol.51 (2), p.386-396 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_aiaa_journals_10_2514_1_J051806 |
source | Alma/SFX Local Collection |
subjects | Active control Actuators Aerodynamics Aerospace engineering Bandwidths Boundary layer Design engineering Dynamical systems Dynamics Exact sciences and technology Flow control Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Microactuators Microjets Motors Nozzle geometry Physics Unsteady |
title | Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Characterization%20of%20High-Bandwidth,%20Resonance%20Enhanced%20Pulsed%20Microactuators:%20A%20Parametric%20Study&rft.jtitle=AIAA%20journal&rft.au=Solomon,%20John%20T&rft.date=2013-02-01&rft.volume=51&rft.issue=2&rft.spage=386&rft.epage=396&rft.pages=386-396&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J051806&rft_dat=%3Cproquest_aiaa_%3E1323250954%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-6435d1cc461ef84857ce48958e81ce3895d002bbffa3261f5c2977aed1ca42a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1282145912&rft_id=info:pmid/&rfr_iscdi=true |