Loading…
Conjugate Design/Analysis Procedure for Film-Cooled Turbine Airfoil Sections
An automated procedure is presented for the conjugate Navier-Stokes with heat conduction design and analysis of film-cooled turbine airfoil sections. In this procedure, the internal-cooling plenums inside of the airfoil and the layer of thermal barrier coating are automatically constructed and compu...
Saved in:
Published in: | Journal of propulsion and power 2011-01, Vol.27 (1), p.61-70 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An automated procedure is presented for the conjugate Navier-Stokes with heat conduction design and analysis of film-cooled turbine airfoil sections. In this procedure, the internal-cooling plenums inside of the airfoil and the layer of thermal barrier coating are automatically constructed and computational grids for the main flowpath, cooling plenums, turbine walls, thermal barrier coating, and cooling tubes are generated. Embedded overlaid grids are used for the cooling tubes, allowing for any arbitrary placement without regridding of the main flowpath, turbine walls, or cooling plenums. The multidisciplinary use of embedded overlaid grids makes this approach unique and effective for automated optimization procedures. The techniques used to construct the geometry and various computational grids and the treatment of embedded overlaid grids in the Navier-Stokes procedure are described. Demonstration of the procedure is provided for a transonic turbine vane. [PUBLISHER ABSTRACT] |
---|---|
ISSN: | 0748-4658 1533-3876 |
DOI: | 10.2514/1.48451 |