Loading…
K-theory of line bundles and smooth varieties
We give a K-theoretic criterion for a quasi-projective variety to be smooth. If \mathbb{L} is a line bundle corresponding to an ample invertible sheaf on X, it suffices that K_q(X)\cong K_q(\mathbb{L}) for all q\le \dim (X)+1.
Saved in:
Published in: | Proceedings of the American Mathematical Society 2018-10, Vol.146 (10), p.4139 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 10 |
container_start_page | 4139 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 146 |
creator | C. Haesemeyer C. Weibel |
description | We give a K-theoretic criterion for a quasi-projective variety to be smooth. If \mathbb{L} is a line bundle corresponding to an ample invertible sheaf on X, it suffices that K_q(X)\cong K_q(\mathbb{L}) for all q\le \dim (X)+1. |
doi_str_mv | 10.1090/proc/14112 |
format | article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_proc_14112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14112</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-d4ec078fa8b729783773c4ecbd264888a4454df746fd7786d0ffd38362ee66f63</originalsourceid><addsrcrecordid>eNotz81KAzEUBeAgCo7VjU-QjcvYm58mN0spasWCG12HzCShIzOTkoxC395WXR3OWRz4CLnlcM_BwnJfcrfkinNxRhoOiEyj0OekAQDBrJX2klzV-nms3CrTEPbK5l3M5UBzokM_Rdp-TWGIlfop0DrmPO_oty99nPtYr8lF8kONN_-5IB9Pj-_rDdu-Pb-sH7bMc1zNLKjYgcHksTXCGpTGyO64tUFohYheqZUKySidgjGoA6QUJEotYtQ6abkgd3-_fqxuX_rRl4Pj4E5GdzK6X6P8AWs4Q60</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>K-theory of line bundles and smooth varieties</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications (Freely Accessible)(OpenAccess)</source><creator>C. Haesemeyer ; C. Weibel</creator><creatorcontrib>C. Haesemeyer ; C. Weibel</creatorcontrib><description>We give a K-theoretic criterion for a quasi-projective variety to be smooth. If \mathbb{L} is a line bundle corresponding to an ample invertible sheaf on X, it suffices that K_q(X)\cong K_q(\mathbb{L}) for all q\le \dim (X)+1.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14112</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2018-10, Vol.146 (10), p.4139</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2018-146-10/S0002-9939-2018-14112-X/S0002-9939-2018-14112-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2018-146-10/S0002-9939-2018-14112-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,777,781,23305,27905,27906,77587,77597</link.rule.ids></links><search><creatorcontrib>C. Haesemeyer</creatorcontrib><creatorcontrib>C. Weibel</creatorcontrib><title>K-theory of line bundles and smooth varieties</title><title>Proceedings of the American Mathematical Society</title><description>We give a K-theoretic criterion for a quasi-projective variety to be smooth. If \mathbb{L} is a line bundle corresponding to an ample invertible sheaf on X, it suffices that K_q(X)\cong K_q(\mathbb{L}) for all q\le \dim (X)+1.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotz81KAzEUBeAgCo7VjU-QjcvYm58mN0spasWCG12HzCShIzOTkoxC395WXR3OWRz4CLnlcM_BwnJfcrfkinNxRhoOiEyj0OekAQDBrJX2klzV-nms3CrTEPbK5l3M5UBzokM_Rdp-TWGIlfop0DrmPO_oty99nPtYr8lF8kONN_-5IB9Pj-_rDdu-Pb-sH7bMc1zNLKjYgcHksTXCGpTGyO64tUFohYheqZUKySidgjGoA6QUJEotYtQ6abkgd3-_fqxuX_rRl4Pj4E5GdzK6X6P8AWs4Q60</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>C. Haesemeyer</creator><creator>C. Weibel</creator><scope/></search><sort><creationdate>20181001</creationdate><title>K-theory of line bundles and smooth varieties</title><author>C. Haesemeyer ; C. Weibel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-d4ec078fa8b729783773c4ecbd264888a4454df746fd7786d0ffd38362ee66f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>C. Haesemeyer</creatorcontrib><creatorcontrib>C. Weibel</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>C. Haesemeyer</au><au>C. Weibel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K-theory of line bundles and smooth varieties</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>146</volume><issue>10</issue><spage>4139</spage><pages>4139-</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We give a K-theoretic criterion for a quasi-projective variety to be smooth. If \mathbb{L} is a line bundle corresponding to an ample invertible sheaf on X, it suffices that K_q(X)\cong K_q(\mathbb{L}) for all q\le \dim (X)+1.</abstract><doi>10.1090/proc/14112</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2018-10, Vol.146 (10), p.4139 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_ams_primary_10_1090_proc_14112 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications (Freely Accessible)(OpenAccess) |
title | K-theory of line bundles and smooth varieties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K-theory%20of%20line%20bundles%20and%20smooth%20varieties&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=C.%20Haesemeyer&rft.date=2018-10-01&rft.volume=146&rft.issue=10&rft.spage=4139&rft.pages=4139-&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14112&rft_dat=%3Cams%3E10_1090_proc_14112%3C/ams%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a185t-d4ec078fa8b729783773c4ecbd264888a4454df746fd7786d0ffd38362ee66f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |