Loading…
On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli
Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner bal...
Saved in:
Published in: | Transactions of the American Mathematical Society 2018-10, Vol.370 (10), p.7181 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 10 |
container_start_page | 7181 |
container_title | Transactions of the American Mathematical Society |
container_volume | 370 |
creator | T. V. Anoop Vladimir Bobkov Sarath Sasi |
description | Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains. |
doi_str_mv | 10.1090/tran/7241 |
format | article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_7241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a184t-7f1e98286e547e23445e8a5795d183da9abab93b4cb2589aecc39c17a8858f603</originalsourceid><addsrcrecordid>eNo1kM1KxDAYRYMoWEcXvkEWbuMkTdJ8WcrgHxS60XX5mkk10qalyQjz9lp_Vpd7D9zFIeRa8FvBLd_mBePWlEqckEJwAFaB5qek4JyXzFplzslFSh_flSuoCtI0keZ3T1Negst0nOKUpxhcyEc69T-oD0vK1Ic3Hz9xOPj_fWY1zgO6gJFOkWKMhyFckrMeh-Sv_nJDXh_uX3ZPrG4en3d3NUMBKjPTC2-hhMprZXwpldIeUBur9wLkHi122FnZKdeVGix656R1wiCAhr7ickNufn9xTO28hBGXYyt4u0poVwntKkF-AYn3T8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications</source><creator>T. V. Anoop ; Vladimir Bobkov ; Sarath Sasi</creator><creatorcontrib>T. V. Anoop ; Vladimir Bobkov ; Sarath Sasi</creatorcontrib><description>Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7241</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7181</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07241-5/S0002-9947-2018-07241-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07241-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>T. V. Anoop</creatorcontrib><creatorcontrib>Vladimir Bobkov</creatorcontrib><creatorcontrib>Sarath Sasi</creatorcontrib><title>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</title><title>Transactions of the American Mathematical Society</title><description>Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1kM1KxDAYRYMoWEcXvkEWbuMkTdJ8WcrgHxS60XX5mkk10qalyQjz9lp_Vpd7D9zFIeRa8FvBLd_mBePWlEqckEJwAFaB5qek4JyXzFplzslFSh_flSuoCtI0keZ3T1Negst0nOKUpxhcyEc69T-oD0vK1Ic3Hz9xOPj_fWY1zgO6gJFOkWKMhyFckrMeh-Sv_nJDXh_uX3ZPrG4en3d3NUMBKjPTC2-hhMprZXwpldIeUBur9wLkHi122FnZKdeVGix656R1wiCAhr7ickNufn9xTO28hBGXYyt4u0poVwntKkF-AYn3T8g</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>T. V. Anoop</creator><creator>Vladimir Bobkov</creator><creator>Sarath Sasi</creator><scope/></search><sort><creationdate>20181001</creationdate><title>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</title><author>T. V. Anoop ; Vladimir Bobkov ; Sarath Sasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a184t-7f1e98286e547e23445e8a5795d183da9abab93b4cb2589aecc39c17a8858f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>T. V. Anoop</creatorcontrib><creatorcontrib>Vladimir Bobkov</creatorcontrib><creatorcontrib>Sarath Sasi</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>T. V. Anoop</au><au>Vladimir Bobkov</au><au>Sarath Sasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>370</volume><issue>10</issue><spage>7181</spage><pages>7181-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains.</abstract><doi>10.1090/tran/7241</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7181 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_ams_primary_10_1090_tran_7241 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications |
title | On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20strict%20monotonicity%20of%20the%20first%20eigenvalue%20of%20the%20p-Laplacian%20on%20annuli&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=T.%20V.%20Anoop&rft.date=2018-10-01&rft.volume=370&rft.issue=10&rft.spage=7181&rft.pages=7181-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7241&rft_dat=%3Cams%3E10_1090_tran_7241%3C/ams%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a184t-7f1e98286e547e23445e8a5795d183da9abab93b4cb2589aecc39c17a8858f603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |