Loading…

On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli

Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner bal...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2018-10, Vol.370 (10), p.7181
Main Authors: T. V. Anoop, Vladimir Bobkov, Sarath Sasi
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 10
container_start_page 7181
container_title Transactions of the American Mathematical Society
container_volume 370
creator T. V. Anoop
Vladimir Bobkov
Sarath Sasi
description Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains.
doi_str_mv 10.1090/tran/7241
format article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_7241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a184t-7f1e98286e547e23445e8a5795d183da9abab93b4cb2589aecc39c17a8858f603</originalsourceid><addsrcrecordid>eNo1kM1KxDAYRYMoWEcXvkEWbuMkTdJ8WcrgHxS60XX5mkk10qalyQjz9lp_Vpd7D9zFIeRa8FvBLd_mBePWlEqckEJwAFaB5qek4JyXzFplzslFSh_flSuoCtI0keZ3T1Negst0nOKUpxhcyEc69T-oD0vK1Ic3Hz9xOPj_fWY1zgO6gJFOkWKMhyFckrMeh-Sv_nJDXh_uX3ZPrG4en3d3NUMBKjPTC2-hhMprZXwpldIeUBur9wLkHi122FnZKdeVGix656R1wiCAhr7ickNufn9xTO28hBGXYyt4u0poVwntKkF-AYn3T8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications</source><creator>T. V. Anoop ; Vladimir Bobkov ; Sarath Sasi</creator><creatorcontrib>T. V. Anoop ; Vladimir Bobkov ; Sarath Sasi</creatorcontrib><description>Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7241</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7181</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07241-5/S0002-9947-2018-07241-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07241-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>T. V. Anoop</creatorcontrib><creatorcontrib>Vladimir Bobkov</creatorcontrib><creatorcontrib>Sarath Sasi</creatorcontrib><title>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</title><title>Transactions of the American Mathematical Society</title><description>Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1kM1KxDAYRYMoWEcXvkEWbuMkTdJ8WcrgHxS60XX5mkk10qalyQjz9lp_Vpd7D9zFIeRa8FvBLd_mBePWlEqckEJwAFaB5qek4JyXzFplzslFSh_flSuoCtI0keZ3T1Negst0nOKUpxhcyEc69T-oD0vK1Ic3Hz9xOPj_fWY1zgO6gJFOkWKMhyFckrMeh-Sv_nJDXh_uX3ZPrG4en3d3NUMBKjPTC2-hhMprZXwpldIeUBur9wLkHi122FnZKdeVGix656R1wiCAhr7ickNufn9xTO28hBGXYyt4u0poVwntKkF-AYn3T8g</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>T. V. Anoop</creator><creator>Vladimir Bobkov</creator><creator>Sarath Sasi</creator><scope/></search><sort><creationdate>20181001</creationdate><title>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</title><author>T. V. Anoop ; Vladimir Bobkov ; Sarath Sasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a184t-7f1e98286e547e23445e8a5795d183da9abab93b4cb2589aecc39c17a8858f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>T. V. Anoop</creatorcontrib><creatorcontrib>Vladimir Bobkov</creatorcontrib><creatorcontrib>Sarath Sasi</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>T. V. Anoop</au><au>Vladimir Bobkov</au><au>Sarath Sasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>370</volume><issue>10</issue><spage>7181</spage><pages>7181-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Let B_1 be a ball in \mathbb{R}^N centred at the origin and let B_0 be a smaller ball compactly contained in B_1. For p\in (1, \infty ), using the shape derivative method, we show that the first eigenvalue of the p-Laplacian in annulus B_1\setminus \overline {B_0} strictly decreases as the inner ball moves towards the boundary of the outer ball. The analogous results for the limit cases as p \to 1 and p \to \infty are also discussed. Using our main result, further we prove the nonradiality of the eigenfunctions associated with the points on the first nontrivial curve of the Fučik spectrum of the p-Laplacian on bounded radial domains.</abstract><doi>10.1090/tran/7241</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7181
issn 0002-9947
1088-6850
language eng
recordid cdi_ams_primary_10_1090_tran_7241
source JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications
title On the strict monotonicity of the first eigenvalue of the p-Laplacian on annuli
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20strict%20monotonicity%20of%20the%20first%20eigenvalue%20of%20the%20p-Laplacian%20on%20annuli&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=T.%20V.%20Anoop&rft.date=2018-10-01&rft.volume=370&rft.issue=10&rft.spage=7181&rft.pages=7181-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7241&rft_dat=%3Cams%3E10_1090_tran_7241%3C/ams%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a184t-7f1e98286e547e23445e8a5795d183da9abab93b4cb2589aecc39c17a8858f603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true