Loading…
Current Challenges and Recent Developments in Mass Spectrometry-Based Metabolomics
High-resolution mass spectrometry (MS) has advanced the study of metabolism in living systems by allowing many metabolites to be measured in a single experiment. Although improvements in mass detector sensitivity have facilitated the detection of greater numbers of analytes, compound identification...
Saved in:
Published in: | Annual review of analytical chemistry (Palo Alto, Calif.) Calif.), 2021-07, Vol.14 (1), p.467-487 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-resolution mass spectrometry (MS) has advanced the study of metabolism in living systems by allowing many metabolites to be measured in a single experiment. Although improvements in mass detector sensitivity have facilitated the detection of greater numbers of analytes, compound identification strategies, feature reduction software, and data sharing have not kept up with the influx of MS data. Here, we discuss the ongoing challenges with MS-based metabolomics, including de novo metabolite identification from mass spectra, differentiation of metabolites from environmental contamination, chromatographic separation of isomers, and incomplete MS databases. Because of their popularity and sensitive detection of small molecules, this review focuses on the challenges of liquid chromatography-mass spectrometry-based methods. We then highlight important instrumentational, experimental, and computational tools that have been created to address these challenges and how they have enabled the advancement of metabolomics research. |
---|---|
ISSN: | 1936-1327 1936-1335 |
DOI: | 10.1146/annurev-anchem-091620-015205 |