Loading…

The Properties of Long Noncoding RNAs That Regulate Chromatin

Beyond coding for proteins, RNA molecules have well-established functions in the posttranscriptional regulation of gene expression. Less clear are the upstream roles of RNA in regulating transcription and chromatin-based processes in the nucleus. RNA is transcribed in the nucleus, so it is logical t...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of genomics and human genetics 2016-08, Vol.17 (1), p.69-94
Main Authors: Rutenberg-Schoenberg, Michael, Sexton, Alec N, Simon, Matthew D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Beyond coding for proteins, RNA molecules have well-established functions in the posttranscriptional regulation of gene expression. Less clear are the upstream roles of RNA in regulating transcription and chromatin-based processes in the nucleus. RNA is transcribed in the nucleus, so it is logical that RNA could play diverse and broad roles that would impact human physiology. Indeed, this idea is supported by well-established examples of noncoding RNAs that affect chromatin structure and function. There has been dramatic growth in studies focused on the nuclear roles of long noncoding RNAs (lncRNAs). Although little is known about the biochemical mechanisms of these lncRNAs, there is a developing consensus regarding the challenges of defining lncRNA function and mechanism. In this review, we examine the definition, discovery, functions, and mechanisms of lncRNAs. We emphasize areas where challenges remain and where consensus among laboratories has underscored the exciting ways in which human lncRNAs may affect chromatin biology.
ISSN:1527-8204
1545-293X
DOI:10.1146/annurev-genom-090314-024939