Loading…

Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria

β-Lactamase evolution presents to the infectious disease community a major challenge in the treatment of infections caused by multidrug-resistant gram-negative bacteria. Because over 1,000 of these naturally occurring β-lactamases exist, attempts to correlate structure and function have become daunt...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of microbiology 2011-01, Vol.65 (1), p.455-478
Main Authors: Bush, Karen, Fisher, Jed F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:β-Lactamase evolution presents to the infectious disease community a major challenge in the treatment of infections caused by multidrug-resistant gram-negative bacteria. Because over 1,000 of these naturally occurring β-lactamases exist, attempts to correlate structure and function have become daunting. Although new enzymes in the extended-spectrum β-lactamase (ESBL) families are frequently identified, the older CTX-M-14 and CTX-M-15 enzymes have become the most prevalent ESBLs in global surveillance. Carbapenemases with either serine-based or zinc-facilitated hydrolysis mechanisms are posing some of the most critical problems. Most geographical regions now report KPC serine carbapenemases and the metallo-β-lactamases VIM, IMP, and NDM-1, even though NDM-1 was only recently identified. The rapid emergence of these newer enzymes, with multiple β-lactamases appearing in a single organism, makes the design of new β-lactamase inactivators or β-lactamase-stable β-lactams all the more difficult. Combination therapy will likely be required to counteract the continuing evolution of these insidious enzymes in multidrug-resistant pathogens.
ISSN:0066-4227
1545-3251
DOI:10.1146/annurev-micro-090110-102911